Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000 Association of Mizar Users

The abstract of the Mizar article:

Basic Properties of Fuzzy Set Operation and Membership Function

by
Takashi Mitsuishi,
Katsumi Wasaki, and
Yasunari Shidama

Received May 22, 2000

MML identifier: FUZZY_2
[ Mizar article, MML identifier index ]


environ

 vocabulary FUZZY_1, FUNCT_1, FUNCT_3, BOOLE, SQUARE_1, RELAT_1, SUBSET_1,
      ARYTM_1, PARTFUN1, RCOMP_1, INTEGRA1, ORDINAL2, FUZZY_2;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0, SQUARE_1,
      REAL_1, RELSET_1, PARTFUN1, RFUNCT_1, INTEGRA1, SEQ_1, RCOMP_1, PSCOMP_1,
      FUZZY_1;
 constructors FUZZY_1, SQUARE_1, INTEGRA2, RFUNCT_1, REAL_1, PSCOMP_1;
 clusters RELSET_1, INTEGRA1, MEMBERED;
 requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;


begin

reserve x,y,y1,y2 for set;
reserve C for non empty set;
reserve c for Element of C;
reserve f,h,g,h1 for Membership_Func of C;
reserve A for FuzzySet of C,f;
reserve B for FuzzySet of C,g;
reserve D for FuzzySet of C,h;
reserve D1 for FuzzySet of C,h1;
reserve X for Universal_FuzzySet of C;
reserve E for Empty_FuzzySet of C;

:::::Basic Properties of Membership Function and Difference Set:::::

theorem :: FUZZY_2:1
for x be Element of C,h be Membership_Func of C holds
0 <= h.x & h.x <= 1;

theorem :: FUZZY_2:2
for x be Element of C holds (EMF(C)).x = 0 & (UMF(C)).x = 1;

theorem :: FUZZY_2:3
for c holds f.c <= h.c implies max(f,min(g,h)).c = min(max(f,g),h).c;

theorem :: FUZZY_2:4
  A c= D implies A \/ (B /\ D) = (A \/ B) /\ D;


definition
let C be non empty set;
let f,g be Membership_Func of C;
let A be FuzzySet of C,f;
let B be FuzzySet of C,g;
func A\B ->
FuzzySet of C,min(f,1_minus g) equals
:: FUZZY_2:def 1
   [:C,min(f,1_minus g).:C:];
end;

canceled;

theorem :: FUZZY_2:6
1_minus min(f,1_minus g) = max(1_minus f,g);

theorem :: FUZZY_2:7
  (A\B)` = A` \/ B;

theorem :: FUZZY_2:8
for c holds f.c <= g.c implies
min(f,1_minus h).c <= min(g,1_minus h).c;

theorem :: FUZZY_2:9
  A c= B implies A\D c= B\D;

theorem :: FUZZY_2:10
for c holds f.c <= g.c implies
min(h,1_minus g).c <= min(h,1_minus f).c;

theorem :: FUZZY_2:11
  A c= B implies D\B c= D\A;

theorem :: FUZZY_2:12
for c holds f.c <= g.c & h.c <= h1.c implies
min(f,1_minus h1).c <= min(g,1_minus h).c;

theorem :: FUZZY_2:13
  A c= B & D c= D1 implies A\D1 c= B\D;

theorem :: FUZZY_2:14
for c holds min(f,1_minus g).c <= f.c;

theorem :: FUZZY_2:15
  A\B c= A;

theorem :: FUZZY_2:16
for c holds min(f,1_minus g).c <= max(min(f,1_minus(g)),min(1_minus(f),g)).c;

theorem :: FUZZY_2:17
  A\B c= A \+\ B;

theorem :: FUZZY_2:18
  A\E = A;

theorem :: FUZZY_2:19
  E\A = E;

theorem :: FUZZY_2:20
for c holds min(f,1_minus g).c <= min(f,1_minus min(f,g)).c;

theorem :: FUZZY_2:21
  A\B c= A\(A /\ B);

theorem :: FUZZY_2:22
for c holds max(min(f,g),min(f,1_minus g)).c <= f.c;

theorem :: FUZZY_2:23
for c holds max(f,min(g,1_minus f)).c <= max(f,g).c;

theorem :: FUZZY_2:24
  A \/ (B\A) c= A \/ B;

theorem :: FUZZY_2:25
  (A /\ B) \/ (A\B) c= A;

theorem :: FUZZY_2:26
min(f,1_minus min(g,1_minus h)) = max(min(f,1_minus g),min(f,h));

theorem :: FUZZY_2:27
  A\(B\D) = (A\B) \/ (A /\ D);

theorem :: FUZZY_2:28
for c holds min(f,g).c <= min(f,1_minus(min(f,1_minus g))).c;

theorem :: FUZZY_2:29
  A /\ B c= A\(A\B);

theorem :: FUZZY_2:30
for c holds min(f,1_minus g).c <= min(max(f,g),1_minus g).c;

theorem :: FUZZY_2:31
  A\B c= (A \/ B)\B;

theorem :: FUZZY_2:32
min(f,1_minus max(g,h)) = min(min(f,1_minus g),min(f,1_minus h));

theorem :: FUZZY_2:33
  A\(B \/ D) = (A\B) /\ (A\D);

theorem :: FUZZY_2:34
min(f,1_minus min(g,h)) = max(min(f,1_minus g),min(f,1_minus h));

theorem :: FUZZY_2:35
  A\(B /\ D) = (A\B) \/ (A\D);

theorem :: FUZZY_2:36
min(min(f,1_minus g),1_minus h) = min(f,1_minus max(g,h));

theorem :: FUZZY_2:37
  (A\B)\D = A\(B \/ D);

theorem :: FUZZY_2:38
for c holds
min(max(f,g),1_minus min(f,g)).c >= max(min(f,1_minus g),min(g,1_minus f)).c;

theorem :: FUZZY_2:39
  (A\B) \/ (B\A) c= (A \/ B)\(A /\ B);

theorem :: FUZZY_2:40
min(max(f,g),1_minus h) = max(min(f,1_minus h),min(g,1_minus h));

theorem :: FUZZY_2:41
  (A \/ B)\D = (A\D) \/ (B\D);

theorem :: FUZZY_2:42
for c holds min(f,1_minus g).c <= h.c & min(g,1_minus f).c <= h.c
implies max(min(f,1_minus g),min(1_minus f,g)).c <= h.c;

theorem :: FUZZY_2:43
  A\B c= D & B\A c= D implies A \+\ B c= D;

theorem :: FUZZY_2:44
  A /\ (B\D) = (A /\ B)\D;

theorem :: FUZZY_2:45
for c holds min(f,min(g,1_minus h)).c <= min(min(f,g),1_minus min(f,h)).c;

theorem :: FUZZY_2:46
  A /\ (B\D) c= (A /\ B)\(A /\ D);

theorem :: FUZZY_2:47
for c holds
min(max(f,g),1_minus min(f,g)).c >= max(min(f,1_minus g),min(1_minus f,g)).c;

theorem :: FUZZY_2:48
  A \+\ B c= (A \/ B)\(A /\ B);

theorem :: FUZZY_2:49
for c holds
max(min(f,g),1_minus max(f,g)).c
<= (1_minus max(min(f,1_minus g),min(1_minus f,g))).c;

theorem :: FUZZY_2:50
  (A /\ B) \/ (A \/ B)` c= (A \+\ B)`;

theorem :: FUZZY_2:51
min(max(min(f,1_minus g),min(1_minus f,g)),1_minus h)
=max(min(f,1_minus max(g,h)),min(g,1_minus max(f,h)));

theorem :: FUZZY_2:52
  (A \+\ B)\D = (A\(B \/ D)) \/ (B\(A \/ D));

theorem :: FUZZY_2:53
for c holds
min(f,1_minus max(min(g,1_minus h),min(1_minus g,h))).c
>= max(min(f,1_minus max(g,h)),min(min(f,g),h)).c;

theorem :: FUZZY_2:54
  (A\(B \/ D)) \/ ((A /\ B) /\ D) c= A\(B \+\ D);

theorem :: FUZZY_2:55
for c holds f.c <= g.c implies g.c >= max(f,min(g,1_minus f)).c;

theorem :: FUZZY_2:56
  A c= B implies A \/ (B\A) c= B;

theorem :: FUZZY_2:57
  for c holds
max(f,g).c >= max(max(min(f,1_minus g),min(1_minus f,g)),min(f,g)).c;

canceled;

theorem :: FUZZY_2:59
min(f,1_minus g) = EMF(C) implies for c holds f.c <= g.c;

theorem :: FUZZY_2:60
  A\B = E implies A c= B;

theorem :: FUZZY_2:61
min(f,g) = EMF(C) implies min(f,1_minus g) = f;

theorem :: FUZZY_2:62
  A /\ B = E implies A\B = A;

begin
:::::Algebraic Product and Algebraic Sum:::::

definition
let C be non empty set;
let h,g be Membership_Func of C;
func h*g -> Membership_Func of C means
:: FUZZY_2:def 2
for c being Element of C holds it.c = (h.c)*(g.c);
end;

definition
let C be non empty set;
let h,g be Membership_Func of C;
func h ++ g -> Membership_Func of C means
:: FUZZY_2:def 3
for c being Element of C holds it.c = h.c + g.c -(h.c)*(g.c);
end;


definition
let C be non empty set;
let h,g be Membership_Func of C;
let A be FuzzySet of C,h;
let B be FuzzySet of C,g;
func A * B -> FuzzySet of C,h*g equals
:: FUZZY_2:def 4
   [:C,(h*g).:C:];
end;


definition
let C be non empty set;
let h,g be Membership_Func of C;
let A be FuzzySet of C,h;
let B be FuzzySet of C,g;
func A ++ B -> FuzzySet of C,(h ++ g) equals
:: FUZZY_2:def 5
   [:C,(h ++ g).:C:];
end;

theorem :: FUZZY_2:63
for c holds (f*f).c <= f.c & (f ++ f).c >= f.c;

theorem :: FUZZY_2:64
  A*A c= A & A c= A ++ A;

theorem :: FUZZY_2:65
f*g = g*f & f ++ g = g ++ f;

theorem :: FUZZY_2:66
  A*B = B*A & A ++ B = B ++ A;

theorem :: FUZZY_2:67
(f*g)*h = f*(g*h);

theorem :: FUZZY_2:68
  (A*B)*D = A*(B*D);

theorem :: FUZZY_2:69
(f ++ g) ++ h = f ++ (g ++ h);

theorem :: FUZZY_2:70
  (A ++ B) ++ D = A ++ (B ++ D);

theorem :: FUZZY_2:71
for c holds (f*(f ++ g)).c <= f.c & (f ++ (f*g)).c >= f.c;

theorem :: FUZZY_2:72
  A*(A ++ B) c= A & A c= A ++ (A*B);

theorem :: FUZZY_2:73
for c holds (f*(g ++ h)).c <= ((f*g) ++ (f*h)).c;

theorem :: FUZZY_2:74
  A*(B ++ D) c= (A*B) ++ (A*D);

theorem :: FUZZY_2:75
for c holds ((f ++ g)*(f ++ h)).c <= (f ++ (g*h)).c;

theorem :: FUZZY_2:76
  (A ++ B)*(A ++ D) c= A ++ (B*D);

theorem :: FUZZY_2:77
1_minus (f*g) = (1_minus f) ++ (1_minus g);

theorem :: FUZZY_2:78
  (A*B)` = A` ++ B`;

theorem :: FUZZY_2:79
1_minus(f ++ g) = (1_minus f)*(1_minus g);

theorem :: FUZZY_2:80
  (A ++B)` = (A`)*(B`);

theorem :: FUZZY_2:81
f ++ g = 1_minus((1_minus f)*(1_minus g));

theorem :: FUZZY_2:82
  A ++ B = (A`*B`)`;

theorem :: FUZZY_2:83
f*(EMF(C)) = EMF(C) & f*(UMF(C)) = f;

theorem :: FUZZY_2:84
  A*E = E & A*X = A;

theorem :: FUZZY_2:85
f ++ EMF(C) = f & f ++ UMF(C) = UMF(C);

theorem :: FUZZY_2:86
  A ++ E = A & A ++ X = X;

canceled 2;

theorem :: FUZZY_2:89
  E c= A*A` & A ++ A` c= X;

theorem :: FUZZY_2:90
for c holds (f*g).c <= min(f,g).c;

theorem :: FUZZY_2:91
  A*B c= A /\ B;

theorem :: FUZZY_2:92
for c holds max(f,g).c <= (f ++ g).c;

theorem :: FUZZY_2:93
  A \/ B c= A ++ B;

theorem :: FUZZY_2:94
  for a,b,c be Real st 0 <= c holds
c*max(a,b) = max(c*a,c*b) & c*min(a,b) = min(c*a,c*b);

theorem :: FUZZY_2:95
  for a,b,c be Real holds
c + max(a,b) = max(c+a,c+b) & c + min(a,b) = min(c+a,c+b);

theorem :: FUZZY_2:96
f*max(g,h) = max(f*g,f*h);

theorem :: FUZZY_2:97
f*min(g,h) = min(f*g,f*h);

theorem :: FUZZY_2:98
  A*(B /\ D) = (A*B) /\ (A*D) & A*(B \/ D) = (A*B) \/ (A*D);

theorem :: FUZZY_2:99
f ++ max(g,h) = max((f ++ g),(f ++ h));

theorem :: FUZZY_2:100
f ++ min(g,h) = min((f ++ g),(f ++ h));

theorem :: FUZZY_2:101
  A ++ (B \/ D) = (A ++ B) \/ (A ++ D) & A ++ (B /\ D) = (A ++ B) /\ (A ++ D);

theorem :: FUZZY_2:102
for c holds (max(f,g)*max(f,h)).c <= max(f,(g*h)).c;

theorem :: FUZZY_2:103
for c holds (min(f,g)*min(f,h)).c <= min(f,(g*h)).c;

theorem :: FUZZY_2:104
  (A \/ B)*(A \/ D) c= A \/ (B*D) & (A /\ B)*(A /\ D) c= A /\ (B*D);

theorem :: FUZZY_2:105
for c be Element of C,f,g be Membership_Func of C holds
(f ++ g).c = 1 - ((1 - f.c)*(1 - g.c));

theorem :: FUZZY_2:106
for c holds max(f,g ++ h).c <= (max(f,g) ++ max(f,h)).c;

theorem :: FUZZY_2:107
for c holds min(f,g ++ h).c <= (min(f,g) ++ min(f,h)).c;

theorem :: FUZZY_2:108
  A \/ (B ++ D) c= (A \/ B) ++ (A \/ D) & A /\ (B ++ D) c= (A /\ B) ++ (A /\ D)
;

Back to top