Journal of Formalized Mathematics
Volume 3, 1991
University of Bialystok
Copyright (c) 1991 Association of Mizar Users

The abstract of the Mizar article:

Mostowski's Fundamental Operations --- Part II

by
Grzegorz Bancerek, and
Andrzej Kondracki

Received February 15, 1991

MML identifier: ZF_FUND2
[ Mizar article, MML identifier index ]


environ

 vocabulary ZF_LANG, FUNCT_1, ARYTM_3, ZF_MODEL, BOOLE, ORDINAL1, CLASSES2,
      ZF_REFLE, PROB_1, RELAT_1, TARSKI, ORDINAL2, CARD_1, CLASSES1, QC_LANG3,
      ZFMODEL1, QC_LANG1, ZF_FUND1, FUNCT_2, ORDINAL4, ZF_FUND2;
 notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0,
      NAT_1, RELAT_1, FUNCT_1, FUNCT_2, ORDINAL1, ZF_LANG, ZF_MODEL, ZFMODEL1,
      ORDINAL2, CARD_1, PROB_1, ZF_LANG1, CLASSES1, CLASSES2, ORDINAL4,
      ZF_REFLE, ZF_FUND1, FINSUB_1;
 constructors ENUMSET1, NAT_1, ZFMODEL1, ZF_LANG1, CLASSES1, ZF_REFLE,
      ZF_FUND1, WELLORD2, MEMBERED, XBOOLE_0;
 clusters SUBSET_1, FUNCT_1, ZF_LANG, ORDINAL1, CLASSES2, RELSET_1, CARD_1,
      FINSUB_1, MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2;
 requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;


begin

 reserve H for ZF-formula,
         M,E for non empty set,
         e for Element of E,
         m,m0,m3,m4 for Element of M,
         v,v1,v2 for Function of VAR,M,
         f,f1 for Function of VAR,E,
         g for Function,
         u,u1,u2 for set,
         x,y for Variable,
         i,n for Nat,
         X for set;

 definition let H,M,v;
  func Section(H,v) -> Subset of M equals
:: ZF_FUND2:def 1
    { m : M,v/(x.0,m) |= H } if x.0 in Free H
       otherwise {};
 end;

 definition let M;
  attr M is predicatively_closed means
:: ZF_FUND2:def 2
   for H, E, f st E in M holds Section(H,f) in M;
 end;

theorem :: ZF_FUND2:1
  E is epsilon-transitive implies
   Section(All(x.2,x.2 'in' x.0 => x.2 'in' x.1),f/(x.1,e)) = E /\ bool e;

 reserve W for Universe, w for Element of W,
         Y for Subclass of W,
         a,a1,b,c for Ordinal of W,
         L for DOMAIN-Sequence of W;

theorem :: ZF_FUND2:2
 (for a,b st a in b holds L.a c= L.b) &
   (for a holds L.a in Union L & L.a is epsilon-transitive) &
     Union L is predicatively_closed
   implies
    Union L |= the_axiom_of_power_sets;

theorem :: ZF_FUND2:3
 omega in W & (for a,b st a in b holds L.a c= L.b) &
  (for a st a <> {} & a is_limit_ordinal holds L.a = Union (L|a)) &
   (for a holds L.a in Union L & L.a is epsilon-transitive) &
    Union L is predicatively_closed
   implies
    for H st {x.0,x.1,x.2} misses Free H holds
     Union L |= the_axiom_of_substitution_for H;

theorem :: ZF_FUND2:4
 Section(H,v)=
   {m : {[{},m]} \/ (v*decode)|((code Free H)\{{}}) in Diagram(H,M)};

theorem :: ZF_FUND2:5
 Y is closed_wrt_A1-A7 & Y is epsilon-transitive implies
  Y is predicatively_closed;

theorem :: ZF_FUND2:6
  (omega in W) &
 (for a,b st a in b holds L.a c= L.b) &
  (for a st a <> {} & a is_limit_ordinal holds L.a = Union (L|a)) &
   (for a holds L.a in Union L & L.a is epsilon-transitive) &
    (Union L is closed_wrt_A1-A7)
 implies
    Union L is_a_model_of_ZF;

Back to top