Journal of Formalized Mathematics
Volume 3, 1991
University of Bialystok
Copyright (c) 1991
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Grzegorz Bancerek,
and
- Andrzej Kondracki
- Received February 15, 1991
- MML identifier: ZF_FUND2
- [
Mizar article,
MML identifier index
]
environ
vocabulary ZF_LANG, FUNCT_1, ARYTM_3, ZF_MODEL, BOOLE, ORDINAL1, CLASSES2,
ZF_REFLE, PROB_1, RELAT_1, TARSKI, ORDINAL2, CARD_1, CLASSES1, QC_LANG3,
ZFMODEL1, QC_LANG1, ZF_FUND1, FUNCT_2, ORDINAL4, ZF_FUND2;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0,
NAT_1, RELAT_1, FUNCT_1, FUNCT_2, ORDINAL1, ZF_LANG, ZF_MODEL, ZFMODEL1,
ORDINAL2, CARD_1, PROB_1, ZF_LANG1, CLASSES1, CLASSES2, ORDINAL4,
ZF_REFLE, ZF_FUND1, FINSUB_1;
constructors ENUMSET1, NAT_1, ZFMODEL1, ZF_LANG1, CLASSES1, ZF_REFLE,
ZF_FUND1, WELLORD2, MEMBERED, XBOOLE_0;
clusters SUBSET_1, FUNCT_1, ZF_LANG, ORDINAL1, CLASSES2, RELSET_1, CARD_1,
FINSUB_1, MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2;
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
begin
reserve H for ZF-formula,
M,E for non empty set,
e for Element of E,
m,m0,m3,m4 for Element of M,
v,v1,v2 for Function of VAR,M,
f,f1 for Function of VAR,E,
g for Function,
u,u1,u2 for set,
x,y for Variable,
i,n for Nat,
X for set;
definition let H,M,v;
func Section(H,v) -> Subset of M equals
:: ZF_FUND2:def 1
{ m : M,v/(x.0,m) |= H } if x.0 in Free H
otherwise {};
end;
definition let M;
attr M is predicatively_closed means
:: ZF_FUND2:def 2
for H, E, f st E in M holds Section(H,f) in M;
end;
theorem :: ZF_FUND2:1
E is epsilon-transitive implies
Section(All(x.2,x.2 'in' x.0 => x.2 'in' x.1),f/(x.1,e)) = E /\ bool e;
reserve W for Universe, w for Element of W,
Y for Subclass of W,
a,a1,b,c for Ordinal of W,
L for DOMAIN-Sequence of W;
theorem :: ZF_FUND2:2
(for a,b st a in b holds L.a c= L.b) &
(for a holds L.a in Union L & L.a is epsilon-transitive) &
Union L is predicatively_closed
implies
Union L |= the_axiom_of_power_sets;
theorem :: ZF_FUND2:3
omega in W & (for a,b st a in b holds L.a c= L.b) &
(for a st a <> {} & a is_limit_ordinal holds L.a = Union (L|a)) &
(for a holds L.a in Union L & L.a is epsilon-transitive) &
Union L is predicatively_closed
implies
for H st {x.0,x.1,x.2} misses Free H holds
Union L |= the_axiom_of_substitution_for H;
theorem :: ZF_FUND2:4
Section(H,v)=
{m : {[{},m]} \/ (v*decode)|((code Free H)\{{}}) in Diagram(H,M)};
theorem :: ZF_FUND2:5
Y is closed_wrt_A1-A7 & Y is epsilon-transitive implies
Y is predicatively_closed;
theorem :: ZF_FUND2:6
(omega in W) &
(for a,b st a in b holds L.a c= L.b) &
(for a st a <> {} & a is_limit_ordinal holds L.a = Union (L|a)) &
(for a holds L.a in Union L & L.a is epsilon-transitive) &
(Union L is closed_wrt_A1-A7)
implies
Union L is_a_model_of_ZF;
Back to top