environ vocabulary ARYTM, PRE_TOPC, SUBSET_1, COMPTS_1, BOOLE, RELAT_1, ORDINAL2, FUNCT_1, RCOMP_1, ARYTM_1, PCOMPS_1, EUCLID, BORSUK_1, ARYTM_3, TOPMETR, PSCOMP_1, JORDAN2C, SQUARE_1, JORDAN6, TOPREAL1, TOPS_2, TOPREAL2, JORDAN3, JGRAPH_2, PARTFUN1, FCONT_1, CONNSP_2, SGRAPH1, REALSET1, FINSET_1; notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, NAT_1, REAL_1, RELAT_1, FUNCT_1, PARTFUN1, FINSET_1, FUNCT_2, FCONT_1, REALSET1, PRE_CIRC, STRUCT_0, PRE_TOPC, TOPS_2, COMPTS_1, CONNSP_2, PCOMPS_1, RCOMP_1, TMAP_1, EUCLID, PSCOMP_1, TOPMETR, JORDAN2C, JORDAN6, TOPREAL1, JORDAN5C, TOPREAL2, JORDAN7; constructors REAL_1, DOMAIN_1, TOPS_2, RCOMP_1, JORDAN6, JORDAN5C, PSCOMP_1, CONNSP_1, FCONT_1, TMAP_1, JORDAN7, PRE_CIRC, JORDAN2C, REALSET1, JORDAN9, JORDAN1K; clusters FUNCT_1, PRE_TOPC, STRUCT_0, XREAL_0, RELSET_1, EUCLID, TOPMETR, JORDAN1B, BORSUK_1, SEQ_1, TEX_2, GROUP_2, MEMBERED, FUNCT_2; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin theorem :: JORDAN16:1 for S1 being finite non empty Subset of REAL, e being Real st for r being Real st r in S1 holds r < e holds max S1 < e; reserve C for Simple_closed_curve, A,A1,A2 for Subset of TOP-REAL 2, p,p1,p2,q,q1,q2 for Point of TOP-REAL 2, n for Nat; definition let n; cluster trivial Subset of TOP-REAL n; end; theorem :: JORDAN16:2 for a,b,c,X being set st a in X & b in X & c in X holds {a,b,c} c= X; theorem :: JORDAN16:3 {}TOP-REAL n is Bounded; theorem :: JORDAN16:4 Lower_Arc C <> Upper_Arc C; theorem :: JORDAN16:5 Segment(A,p1,p2,q1,q2) c= A; theorem :: JORDAN16:6 for T being non empty TopSpace, A,B being Subset of T st A c= B holds T|A is SubSpace of T|B; theorem :: JORDAN16:7 A is_an_arc_of p1,p2 & q in A implies q in L_Segment(A,p1,p2,q); theorem :: JORDAN16:8 A is_an_arc_of p1,p2 & q in A implies q in R_Segment(A,p1,p2,q); theorem :: JORDAN16:9 A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 implies q1 in Segment(A,p1,p2,q1,q2) & q2 in Segment(A,p1,p2,q1,q2); theorem :: JORDAN16:10 Segment(p,q,C) c= C; theorem :: JORDAN16:11 p in C & q in C implies LE p,q,C or LE q,p,C; theorem :: JORDAN16:12 for X,Y being non empty TopSpace, Y0 being non empty SubSpace of Y, f being map of X,Y, g being map of X,Y0 st f = g & f is continuous holds g is continuous; theorem :: JORDAN16:13 for S,T being non empty TopSpace, S0 being non empty SubSpace of S, T0 being non empty SubSpace of T, f being map of S,T st f is_homeomorphism for g being map of S0,T0 st g = f|S0 & g is onto holds g is_homeomorphism; theorem :: JORDAN16:14 for P1,P2,P3 being Subset of TOP-REAL 2 for p1,p2 being Point of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P3 is_an_arc_of p1,p2 & P2 /\ P3={p1,p2} & P1 c= P2 \/ P3 holds P1=P2 or P1=P3; theorem :: JORDAN16:15 for C being Simple_closed_curve, A1,A2 being Subset of TOP-REAL 2, p1,p2 being Point of TOP-REAL 2 st A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2 & A1 c= C & A2 c= C & A1 <> A2 holds A1 \/ A2 = C & A1 /\ A2 = {p1,p2}; theorem :: JORDAN16:16 for A1,A2 being Subset of TOP-REAL 2, p1,p2,q1,q2 being Point of TOP-REAL 2 st A1 is_an_arc_of p1,p2 & A1 /\ A2 = {q1,q2} holds A1 <> A2; theorem :: JORDAN16:17 for C being Simple_closed_curve, A1,A2 being Subset of TOP-REAL 2, p1,p2 being Point of TOP-REAL 2 st A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2 & A1 c= C & A2 c= C & A1 /\ A2 = {p1,p2} holds A1 \/ A2 = C; theorem :: JORDAN16:18 A1 c= C & A2 c= C & A1 <> A2 & A1 is_an_arc_of p1,p2 & A2 is_an_arc_of p1,p2 implies for A st A is_an_arc_of p1,p2 & A c= C holds A = A1 or A = A2; theorem :: JORDAN16:19 for C being Simple_closed_curve, A being non empty Subset of TOP-REAL 2 st A is_an_arc_of W-min C, E-max C & A c= C holds A = Lower_Arc C or A = Upper_Arc C; theorem :: JORDAN16:20 A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 implies ex g being map of I[01], (TOP-REAL 2)|A, s1, s2 being Real st g is_homeomorphism & g.0 = p1 & g.1 = p2 & g.s1 = q1 & g.s2 = q2 & 0 <= s1 & s1 <= s2 & s2 <= 1; theorem :: JORDAN16:21 A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 & q1 <> q2 implies ex g being map of I[01], (TOP-REAL 2)|A, s1, s2 being Real st g is_homeomorphism & g.0 = p1 & g.1 = p2 & g.s1 = q1 & g.s2 = q2 & 0 <= s1 & s1 < s2 & s2 <= 1; theorem :: JORDAN16:22 A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 implies Segment(A,p1,p2,q1,q2) is non empty; theorem :: JORDAN16:23 p in C implies p in Segment(p,W-min C,C) & W-min C in Segment(p,W-min C,C); definition let f be PartFunc of REAL, REAL; attr f is continuous means :: JORDAN16:def 1 f is_continuous_on dom f; end; definition let f be Function of REAL, REAL; redefine attr f is continuous means :: JORDAN16:def 2 f is_continuous_on REAL; end; definition let a,b be real number; func AffineMap(a,b) -> Function of REAL, REAL means :: JORDAN16:def 3 for x being real number holds it.x = a*x + b; end; definition let a,b be real number; cluster AffineMap(a,b) -> continuous; end; definition cluster continuous Function of REAL, REAL; end; theorem :: JORDAN16:24 for f,g being continuous PartFunc of REAL, REAL holds g*f is continuous PartFunc of REAL, REAL; theorem :: JORDAN16:25 for a,b being real number holds AffineMap(a,b).0 = b; theorem :: JORDAN16:26 for a,b being real number holds AffineMap(a,b).1 = a+b; theorem :: JORDAN16:27 for a,b being real number st a<> 0 holds AffineMap(a,b) is one-to-one; theorem :: JORDAN16:28 for a,b,x,y being real number st a > 0 & x < y holds AffineMap(a,b).x < AffineMap(a,b).y; theorem :: JORDAN16:29 for a,b,x,y being real number st a < 0 & x < y holds AffineMap(a,b).x > AffineMap(a,b).y; theorem :: JORDAN16:30 for a,b,x,y being real number st a >= 0 & x <= y holds AffineMap(a,b).x <= AffineMap(a,b).y; theorem :: JORDAN16:31 for a,b,x,y being real number st a <= 0 & x <= y holds AffineMap(a,b).x >= AffineMap(a,b).y; theorem :: JORDAN16:32 for a,b being real number st a <> 0 holds rng AffineMap(a,b) = REAL; theorem :: JORDAN16:33 for a,b being real number st a <> 0 holds AffineMap(a,b)" = AffineMap(a",-b/a); theorem :: JORDAN16:34 for a,b being real number st a > 0 holds AffineMap(a,b).:[.0,1.] = [.b,a+b.]; theorem :: JORDAN16:35 for f being map of R^1, R^1 for a,b being Real st a <> 0 & f = AffineMap(a,b) holds f is_homeomorphism; theorem :: JORDAN16:36 A is_an_arc_of p1,p2 & LE q1, q2, A, p1, p2 & q1 <> q2 implies Segment(A,p1,p2,q1,q2) is_an_arc_of q1,q2; theorem :: JORDAN16:37 for p1,p2 being Point of TOP-REAL 2 for P being Subset of TOP-REAL 2 st P c= C & P is_an_arc_of p1,p2 & W-min C in P & E-max C in P holds Upper_Arc C c= P or Lower_Arc C c= P;