Journal of Formalized Mathematics
Volume 10, 1998
University of Bialystok
Copyright (c) 1998
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received November 3, 1998
- MML identifier: VECTMETR
- [
Mizar article,
MML identifier index
]
environ
vocabulary METRIC_1, JORDAN1, ARYTM_1, FINSEQ_1, ABSVALUE, RLVECT_1, ARYTM_3,
BINTREE1, TREES_2, RELAT_1, FUNCT_1, BOOLE, TREES_4, CAT_1, TREES_1,
POWER, INT_1, BINTREE2, MCART_1, EUCLID, FINSEQ_2, MIDSP_3, MARGREL1,
ZF_LANG, NAT_1, MATRIX_2, FUNCOP_1, RELAT_2, PRE_TOPC, FUNCT_2, SUBSET_1,
BINOP_1, UNIALG_1, COMPLEX1, VECTSP_1, GROUP_1, GROUP_2, VECTMETR,
FINSEQ_4, PARTFUN1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0, MCART_1,
REAL_1, RELAT_2, NAT_1, INT_1, STRUCT_0, POWER, ABIAN, SERIES_1, RELAT_1,
RELSET_1, ABSVALUE, MARGREL1, BINOP_1, DOMAIN_1, FUNCT_1, PARTFUN1,
FUNCT_2, PRE_TOPC, FUNCOP_1, FINSEQ_1, FINSEQ_2, FINSEQ_4, FINSEQOP,
BINARITH, TREES_1, TREES_2, TREES_4, BINTREE1, BINTREE2, RVSUM_1,
RLVECT_1, VECTSP_1, GROUP_1, GROUP_2, TOPS_2, GRCAT_1, METRIC_1, EUCLID,
MIDSP_3;
constructors REAL_1, ABIAN, SERIES_1, DOMAIN_1, TOPS_2, TREES_9, FINSEQ_4,
FINSEQOP, BINARITH, BINTREE2, GRCAT_1, EUCLID, GROUP_2, MEMBERED;
clusters SUBSET_1, STRUCT_0, RELSET_1, FUNCT_1, BINTREE1, BINTREE2, GROUP_1,
GROUP_2, METRIC_1, TREES_2, MARGREL1, BINARITH, NAT_1, MEMBERED, FUNCT_2;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin :: Convex and Internal Metric Spaces
definition
let V be non empty MetrStruct;
attr V is convex means
:: VECTMETR:def 1
for x,y be Element of V
for r be Real st 0 <= r & r <= 1
ex z be Element of V st
dist(x,z) = r * dist(x,y) & dist(z,y) = (1 - r) * dist(x,y);
end;
definition
let V be non empty MetrStruct;
attr V is internal means
:: VECTMETR:def 2
for x,y be Element of V
for p,q be Real st p > 0 & q > 0
ex f be FinSequence of the carrier of V st
f/.1 = x & f/.len f = y &
(for i be Nat st 1 <= i & i <=
len f - 1 holds dist(f/.i,f/.(i+1)) < p) &
for F be FinSequence of REAL st len F = len f - 1 &
for i be Nat st 1 <= i & i <= len F holds F/.i = dist(f/.i,f/.(i+1))
holds abs(dist(x,y) - Sum F) < q;
end;
theorem :: VECTMETR:1
for V be non empty MetrSpace st V is convex
for x,y be Element of V
for p be Real st p > 0
ex f be FinSequence of the carrier of V st
f/.1 = x & f/.len f = y &
(for i be Nat st 1 <= i & i <= len f - 1 holds dist(f/.i,f/.(i+1)) < p) &
for F be FinSequence of REAL st len F = len f - 1 &
for i be Nat st 1 <= i & i <= len F holds F/.i = dist(f/.i,f/.(i+1))
holds dist(x,y) = Sum F;
definition
cluster convex -> internal (non empty MetrSpace);
end;
definition
cluster convex (non empty MetrSpace);
end;
definition
mode Geometry is Reflexive discerning symmetric triangle internal
(non empty MetrStruct);
end;
begin :: Isometric Functions
definition
let V be non empty MetrStruct;
let f be map of V,V;
attr f is isometric means
:: VECTMETR:def 3
rng f = the carrier of V &
for x,y be Element of V holds dist(x,y) = dist(f.x,f.y);
end;
definition
let V be non empty MetrStruct;
func ISOM(V) -> set means
:: VECTMETR:def 4
for x be set holds
x in it iff ex f be map of V,V st f = x & f is isometric;
end;
definition
let V be non empty MetrStruct;
redefine func ISOM(V) -> Subset of Funcs(the carrier of V,the carrier of V);
end;
theorem :: VECTMETR:2
for V be discerning Reflexive (non empty MetrStruct)
for f be map of V,V st f is isometric holds
f is one-to-one;
definition
let V be discerning Reflexive (non empty MetrStruct);
cluster isometric -> one-to-one map of V,V;
end;
definition
let V be non empty MetrStruct;
cluster isometric map of V,V;
end;
theorem :: VECTMETR:3
for V be discerning Reflexive (non empty MetrStruct)
for f be isometric map of V,V holds
f" is isometric;
theorem :: VECTMETR:4
for V be non empty MetrStruct
for f,g be isometric map of V,V holds
f*g is isometric;
theorem :: VECTMETR:5
for V be non empty MetrStruct holds
id(V) is isometric;
definition
let V be non empty MetrStruct;
cluster ISOM V -> non empty;
end;
begin :: Real Linear-Metric Spaces
definition
struct(RLSStruct,MetrStruct) RLSMetrStruct (# carrier -> set,
distance -> Function of [:the carrier,the carrier:],REAL,
Zero -> Element of the carrier,
add -> BinOp of the carrier,
Mult -> Function of [:REAL, the carrier:],the carrier #);
end;
definition
cluster non empty strict RLSMetrStruct;
end;
definition
let X be non empty set;
let F be Function of [:X,X:],REAL;
let O be Element of X;
let B be BinOp of X;
let G be Function of [:REAL,X:],X;
cluster RLSMetrStruct (# X,F,O,B,G #) -> non empty;
end;
definition
let V be non empty RLSMetrStruct;
attr V is homogeneous means
:: VECTMETR:def 5
for r be Real
for v,w be Element of V holds
dist(r*v,r*w) = abs(r) * dist(v,w);
end;
definition
let V be non empty RLSMetrStruct;
attr V is translatible means
:: VECTMETR:def 6
for u,w,v be Element of V holds
dist(v,w) = dist(v+u,w+u);
end;
definition
let V be non empty RLSMetrStruct;
let v be Element of V;
func Norm(v) -> Real equals
:: VECTMETR:def 7
dist(0.V,v);
end;
definition
cluster strict Abelian add-associative right_zeroed
right_complementable RealLinearSpace-like
Reflexive discerning symmetric triangle
homogeneous translatible (non empty RLSMetrStruct);
end;
definition
mode RealLinearMetrSpace is
Abelian add-associative right_zeroed right_complementable
RealLinearSpace-like Reflexive discerning symmetric triangle
homogeneous translatible (non empty RLSMetrStruct);
end;
theorem :: VECTMETR:6
for V be homogeneous Abelian add-associative right_zeroed
right_complementable RealLinearSpace-like (non empty RLSMetrStruct)
for r be Real
for v be Element of V holds
Norm (r * v) = abs(r) * Norm v;
theorem :: VECTMETR:7
for V be translatible Abelian add-associative right_zeroed
right_complementable triangle (non empty RLSMetrStruct)
for v,w be Element of V holds
Norm (v + w) <= Norm v + Norm w;
theorem :: VECTMETR:8
for V be translatible add-associative right_zeroed right_complementable
(non empty RLSMetrStruct)
for v,w be Element of V holds
dist(v,w) = Norm (w - v);
definition
let n be Nat;
func RLMSpace n -> strict RealLinearMetrSpace means
:: VECTMETR:def 8
the carrier of it = REAL n &
the distance of it = Pitag_dist n &
the Zero of it = 0*n &
(for x,y be Element of REAL n holds (the add of it).(x,y) = x + y) &
for x be Element of REAL n,r be Element of REAL holds
(the Mult of it).(r,x) = r * x;
end;
theorem :: VECTMETR:9
for n be Nat
for f be isometric map of RLMSpace n,RLMSpace n holds
rng f = REAL n;
begin :: Groups of Isometric Functions
definition
let n be Nat;
func IsomGroup n -> strict HGrStr means
:: VECTMETR:def 9
the carrier of it = ISOM RLMSpace n &
(for f,g be Function st f in ISOM RLMSpace n &
g in ISOM RLMSpace n holds (the mult of it).(f,g) = f*g);
end;
definition
let n be Nat;
cluster IsomGroup n -> non empty;
end;
definition
let n be Nat;
cluster IsomGroup n -> associative Group-like;
end;
theorem :: VECTMETR:10
for n be Nat holds
1.(IsomGroup n) = id (RLMSpace n);
theorem :: VECTMETR:11
for n be Nat
for f be Element of IsomGroup n
for g be map of RLMSpace n,RLMSpace n st f = g holds
f" = g";
definition
let n be Nat;
let G be Subgroup of IsomGroup n;
func SubIsomGroupRel G -> Relation of the carrier of RLMSpace n means
:: VECTMETR:def 10
for A,B be Element of RLMSpace n holds
[A,B] in it iff ex f be Function st f in the carrier of G & f.A = B;
end;
definition
let n be Nat;
let G be Subgroup of IsomGroup n;
cluster SubIsomGroupRel G -> total symmetric transitive;
end;
Back to top