Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Shunichi Kobayashi
- Received December 28, 1999
- MML identifier: BVFUNC24
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1,
CAT_1, FUNCT_4, RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP, TARSKI;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, EQREL_1, PARTIT1,
CANTOR_1, BVFUNC_1, BVFUNC_2;
constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1;
clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Chap. 1 Preliminaries
reserve Y for non empty set,
G for Subset of PARTITIONS(Y),
A, B, C, D, E, F, J, M for a_partition of Y,
x,x1,x2,x3,x4,x5,x6,x7,x8,x9,y,X for set;
theorem :: BVFUNC24:1
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J;
theorem :: BVFUNC24:2
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J;
theorem :: BVFUNC24:3
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J;
theorem :: BVFUNC24:4
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J;
theorem :: BVFUNC24:5
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J;
theorem :: BVFUNC24:6
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J;
theorem :: BVFUNC24:7
G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F;
theorem :: BVFUNC24:8
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
h.D = D' & h.E = E' & h.F = F' &
h.J = J';
theorem :: BVFUNC24:9
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J};
theorem :: BVFUNC24:10
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J};
theorem :: BVFUNC24:11
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y,
h being Function
st G is independent & G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
holds
EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) meets EqClass(z,A);
theorem :: BVFUNC24:12
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
theorem :: BVFUNC24:13
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:14
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:15
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:16
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:17
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:18
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M;
theorem :: BVFUNC24:19
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M;
theorem :: BVFUNC24:20
G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J;
theorem :: BVFUNC24:21
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (A .--> A')
holds h.B = B' & h.C = C' &
h.D = D' & h.E = E' & h.F = F' &
h.J = J';
theorem :: BVFUNC24:22
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J,M};
theorem :: BVFUNC24:23
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M};
theorem :: BVFUNC24:24
for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M being a_partition of Y
, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\
EqClass(z,A) <> {};
theorem :: BVFUNC24:25
for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M being a_partition of Y
, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
scheme UI10
{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10()->set,
P[set,set,set,set,set,set,set,set,set,set]}:
P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8(),x9(),x10()]
provided
for x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 being set
holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];
definition
let x1,x2,x3,x4,x5,x6,x7,x8,x9;
func { x1,x2,x3,x4,x5,x6,x7,x8,x9 } -> set means
:: BVFUNC24:def 1
x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or
x=x8 or x=x9;
end;
theorem :: BVFUNC24:26
x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } implies
x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8
or x=x9;
theorem :: BVFUNC24:27
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 };
theorem :: BVFUNC24:28
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 };
theorem :: BVFUNC24:29
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 };
theorem :: BVFUNC24:30
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 }
;
theorem :: BVFUNC24:31
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 };
theorem :: BVFUNC24:32
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 };
theorem :: BVFUNC24:33
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 };
theorem :: BVFUNC24:34
{ x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 };
theorem :: BVFUNC24:35
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:36
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:37
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:38
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:39
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:40
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M '/\' N;
theorem :: BVFUNC24:41
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M '/\' N;
theorem :: BVFUNC24:42
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' N;
theorem :: BVFUNC24:43
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(N,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M;
theorem :: BVFUNC24:44
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (N .--> N') +* (A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
h.D = D' & h.E = E' & h.F = F' &
h.J = J' & h.M = M' & h.N = N';
theorem :: BVFUNC24:45
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (N .--> N') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J,M,N};
theorem :: BVFUNC24:46
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (J .--> J') +*
(M .--> M') +* (N .--> N') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N};
theorem :: BVFUNC24:47
for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) /\
EqClass(z,A) <> {};
theorem :: BVFUNC24:48
for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
theorem :: BVFUNC24:49
x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9
implies x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 };
Back to top