environ vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1, CAT_1, FUNCT_4, RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP, TARSKI; notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1, BVFUNC_2; constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1; clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, XBOOLE_0; requirements SUBSET, BOOLE; begin :: Chap. 1 Preliminaries reserve Y for non empty set, G for Subset of PARTITIONS(Y), A, B, C, D, E, F, J, M for a_partition of Y, x,x1,x2,x3,x4,x5,x6,x7,x8,x9,y,X for set; theorem :: BVFUNC24:1 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J; theorem :: BVFUNC24:2 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J; theorem :: BVFUNC24:3 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J; theorem :: BVFUNC24:4 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J; theorem :: BVFUNC24:5 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J; theorem :: BVFUNC24:6 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J; theorem :: BVFUNC24:7 G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F; theorem :: BVFUNC24:8 for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds h.A = A' & h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J'; theorem :: BVFUNC24:9 for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J}; theorem :: BVFUNC24:10 for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J}; theorem :: BVFUNC24:11 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) meets EqClass(z,A); theorem :: BVFUNC24:12 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & EqClass(z,C '/\' D '/\' E '/\' F '/\' J)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)); theorem :: BVFUNC24:13 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M; theorem :: BVFUNC24:14 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M; theorem :: BVFUNC24:15 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M; theorem :: BVFUNC24:16 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M; theorem :: BVFUNC24:17 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M; theorem :: BVFUNC24:18 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M; theorem :: BVFUNC24:19 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M; theorem :: BVFUNC24:20 G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J; theorem :: BVFUNC24:21 for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J'; theorem :: BVFUNC24:22 for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J,M}; theorem :: BVFUNC24:23 for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M}; theorem :: BVFUNC24:24 for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M being a_partition of Y , z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\ EqClass(z,A) <> {}; theorem :: BVFUNC24:25 for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M being a_partition of Y , z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)); scheme UI10 {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10()->set, P[set,set,set,set,set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8(),x9(),x10()] provided for x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 being set holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10]; definition let x1,x2,x3,x4,x5,x6,x7,x8,x9; func { x1,x2,x3,x4,x5,x6,x7,x8,x9 } -> set means :: BVFUNC24:def 1 x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9; end; theorem :: BVFUNC24:26 x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9; theorem :: BVFUNC24:27 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 }; theorem :: BVFUNC24:28 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 }; theorem :: BVFUNC24:29 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 }; theorem :: BVFUNC24:30 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } ; theorem :: BVFUNC24:31 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 }; theorem :: BVFUNC24:32 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 }; theorem :: BVFUNC24:33 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 }; theorem :: BVFUNC24:34 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 }; theorem :: BVFUNC24:35 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N; theorem :: BVFUNC24:36 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N; theorem :: BVFUNC24:37 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N; theorem :: BVFUNC24:38 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M '/\' N; theorem :: BVFUNC24:39 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M '/\' N; theorem :: BVFUNC24:40 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M '/\' N; theorem :: BVFUNC24:41 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M '/\' N; theorem :: BVFUNC24:42 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' N; theorem :: BVFUNC24:43 for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(N,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M; theorem :: BVFUNC24:44 for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds h.A = A' & h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J' & h.M = M' & h.N = N'; theorem :: BVFUNC24:45 for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J,M,N}; theorem :: BVFUNC24:46 for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}; theorem :: BVFUNC24:47 for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y , z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) /\ EqClass(z,A) <> {}; theorem :: BVFUNC24:48 for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y, z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)); theorem :: BVFUNC24:49 x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9 implies x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 };