The Mizar article:

Predicate Calculus for Boolean Valued Functions. Part XII

by
Shunichi Kobayashi

Received December 28, 1999

Copyright (c) 1999 Association of Mizar Users

MML identifier: BVFUNC24
[ MML identifier index ]


environ

 vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1,
      CAT_1, FUNCT_4, RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP, TARSKI;
 notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
      FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, EQREL_1, PARTIT1,
      CANTOR_1, BVFUNC_1, BVFUNC_2;
 constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1;
 clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, XBOOLE_0;
 requirements SUBSET, BOOLE;
 definitions TARSKI;
 theorems EQREL_1, ZFMISC_1, T_1TOPSP, PARTIT1, BVFUNC_2, BVFUNC11, BVFUNC14,
      FUNCT_4, CQC_LANG, TARSKI, ENUMSET1, FUNCT_1, CANTOR_1, SETFAM_1,
      BVFUNC23, YELLOW14, XBOOLE_0, XBOOLE_1;
 schemes ENUMSET1, XBOOLE_0;

begin :: Chap. 1  Preliminaries

reserve Y for non empty set,

        G for Subset of PARTITIONS(Y),
        A, B, C, D, E, F, J, M for a_partition of Y,
        x,x1,x2,x3,x4,x5,x6,x7,x8,x9,y,X for set;

theorem Th1:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J
proof
  assume
A1: G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J;
  A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7;
A3:  G \ {A}={A} \/ {B,C,D,E,F,J} \ {A} by A1,ENUMSET1:56;
  A4:not B in {A} by A1,TARSKI:def 1;
  A5:not C in {A} by A1,TARSKI:def 1;
  A6:not D in {A} by A1,TARSKI:def 1;
  A7:not E in {A} by A1,TARSKI:def 1;
  A8:not F in {A} by A1,TARSKI:def 1;
  A9:not J in {A} by A1,TARSKI:def 1;
  A10:{D,E} \ {A} = {D,E} by A6,A7,ZFMISC_1:72;
    {B,C,D,E,F,J} \ {A} = ({B} \/ {C,D,E,F,J}) \ {A} by ENUMSET1:51
  .= ({B} \ {A}) \/ ({C,D,E,F,J} \ {A}) by XBOOLE_1:42
  .= {B} \/ ({C,D,E,F,J} \ {A}) by A4,ZFMISC_1:67
  .= {B} \/ (({C} \/ {D,E,F,J}) \ {A}) by ENUMSET1:47
  .= {B} \/ (({C} \ {A}) \/ ({D,E,F,J} \ {A})) by XBOOLE_1:42
  .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J}) \ {A})) by ENUMSET1:45
  .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J} \ {A}))) by XBOOLE_1:42
  .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ {F,J})) by A8,A9,A10,ZFMISC_1:72
  .= {B} \/ ({C} \/ ({D,E} \/ {F,J})) by A5,ZFMISC_1:67
  .= {B} \/ ({C} \/ {D,E,F,J}) by ENUMSET1:45
  .= {B} \/ {C,D,E,F,J} by ENUMSET1:47
  .= {B,C,D,E,F,J} by ENUMSET1:51;
then A11:G \ {A} = {A} \ {A} \/ {B,C,D,E,F,J} by A3,XBOOLE_1:42
           .= {} \/ {B,C,D,E,F,J} by XBOOLE_1:37;
  A12:B '/\' C '/\' D '/\' E '/\' F '/\' J c= '/\' (G \ {A})
  proof
    let x be set;
    assume A13:x in B '/\' C '/\' D '/\' E '/\' F '/\' J;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) & not x in {{}}
      by XBOOLE_0:def 4;
    then consider bcdef,j being set such that
A14:  bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & x = bcdef /\ j
        by SETFAM_1:def 5;
      bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A14,PARTIT1:def 4;
    then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}}
      by XBOOLE_0:def 4;
    then consider bcde,f being set such that
A15:  bcde in B '/\' C '/\' D '/\' E & f in F &
      bcdef = bcde /\ f by SETFAM_1:def 5;
      bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A15,PARTIT1:def 4;
    then bcde in INTERSECTION(B '/\' C '/\' D,E) &
    not bcde in {{}} by XBOOLE_0:def 4;
    then consider bcd,e being set such that
A16:  bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5;
      bcd in INTERSECTION(B '/\' C,D) \ {{}} by A16,PARTIT1:def 4;
    then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4;
    then consider bc,d being set such that
A17:  bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5;
      bc in INTERSECTION(B,C) \ {{}} by A17,PARTIT1:def 4;
    then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4;
    then consider b,c being set such that
A18:  b in B & c in C & bc = b /\ c by SETFAM_1:def 5;
    set h = (B .--> b) +* (C .--> c) +* (D .--> d) +*
            (E .--> e) +* (F .--> f) +* (J .--> j);
A19: dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f)
        +* (J .--> j))
      = {J,B,C,D,E,F} by BVFUNC23:8
     .= {J} \/ {B,C,D,E,F} by ENUMSET1:51
     .= {B,C,D,E,F,J} by ENUMSET1:55;
A20:  dom h = {J,B,C,D,E,F} by BVFUNC23:8
           .= {J} \/ {B,C,D,E,F} by ENUMSET1:51
           .= {B,C,D,E,F,J} by ENUMSET1:55;
A21:  h.D = d by A1,BVFUNC23:7;
A22:  h.B = b by A1,BVFUNC23:7;
A23:  h.C = c by A1,BVFUNC23:7;
A24:  h.E = e by A1,BVFUNC23:7;
A25:  h.F = f by A1,BVFUNC23:7;
A26:  h.J = j by A1,BVFUNC23:7;
A27:  for p being set st p in (G \ {A}) holds h.p in p
      proof
        let p be set;
        assume p in (G \ {A});
         then p=B or p=C or p=D or p=E or p=F or p=J by A11,ENUMSET1:28;
        hence thesis by A1,A14,A15,A16,A17,A18,BVFUNC23:7;
      end;

        D in dom h by A20,ENUMSET1:29;
then A28:  h.D in rng h by FUNCT_1:def 5;
        B in dom h by A20,ENUMSET1:29;
then A29:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A20,ENUMSET1:29;
then A30:  h.C in rng h by FUNCT_1:def 5;
        E in dom h by A20,ENUMSET1:29;
then A31:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A20,ENUMSET1:29;
then A32:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A20,ENUMSET1:29;
then A33:  h.J in rng h by FUNCT_1:def 5;

      A34:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A35:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
           x1=B or x1=C or x1=D or x1=E or x1=F or x1=J by A20,A35,ENUMSET1:28;
        hence thesis by A35,ENUMSET1:29;
      end;
        {h.B,h.C,h.D,h.E,h.F,h.J} c= rng h
      proof
        let t be set;
        assume t in {h.B,h.C,h.D,h.E,h.F,h.J};
        hence thesis by A28,A29,A30,A31,A32,A33,ENUMSET1:28;
      end;
      then A36:rng h = {h.B,h.C,h.D,h.E,h.F,h.J} by A34,XBOOLE_0:def 10;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
         then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J
          by A34,ENUMSET1:28;
        hence thesis by A14,A15,A16,A17,A18,A21,A22,A23,A24,A25,A26;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
      reconsider h as Function;
A37:  Intersect FF = meet (rng h) by A28,CANTOR_1:def 3;
    A38:x c= Intersect FF
    proof
      let u be set;
      assume A39:u in x;
      A40:FF<>{} by A36,ENUMSET1:29;
        for y be set holds y in FF implies u in y
      proof
        let y be set;
        assume
A41:     y in FF;
          now per cases by A34,A41,ENUMSET1:28;
        case
A42:     y=h.D;
          u in (d /\ ((b /\ c) /\ e)) /\ f /\ j
        by A14,A15,A16,A17,A18,A39,XBOOLE_1:16;
        then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j by XBOOLE_1:16;
        then u in d /\ (((b /\ c) /\ e /\ f) /\ j) by XBOOLE_1:16;
        hence thesis by A21,A42,XBOOLE_0:def 3;
        case
A43:     y=h.B;
          u in (c /\ (d /\ b)) /\ e /\ f /\
 j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) by XBOOLE_1:16;
        then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) by XBOOLE_1:16;
        then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) by XBOOLE_1:16;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b by XBOOLE_1:16;
        hence thesis by A22,A43,XBOOLE_0:def 3;
        case
A44:     y=h.C;
          u in (c /\ (d /\ b)) /\ e /\ f /\
 j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) by XBOOLE_1:16;
        hence thesis by A23,A44,XBOOLE_0:def 3;
        case
A45:     y=h.E;
          u in ((b /\ c) /\ d) /\ (f /\ e) /\ j
        by A14,A15,A16,A17,A18,A39,XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) by XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e by XBOOLE_1:16;
        hence thesis by A24,A45,XBOOLE_0:def 3;
        case
A46:     y=h.F;
          u in (((b /\ c) /\ d) /\ e) /\ j /\
 f by A14,A15,A16,A17,A18,A39,XBOOLE_1:16;
        hence thesis by A25,A46,XBOOLE_0:def 3;
        case y=h.J;
        hence thesis by A14,A26,A39,XBOOLE_0:def 3;
        end;
        hence thesis;
      end;
      then u in meet FF by A40,SETFAM_1:def 1;
      hence thesis by A40,CANTOR_1:def 3;
    end;
      Intersect FF c= x
    proof
      let t be set;
      assume
A47:   t in Intersect FF;
        h.B in rng h & h.C in rng h & h.D in rng h &
      h.E in rng h & h.F in rng h &
      h.J in rng h by A36,ENUMSET1:29;
      then A48:t in b & t in c & t in d & t in e & t in f & t in j
          by A21,A22,A23,A24,A25,A26,A37,A47,SETFAM_1:def 1;
      then t in b /\ c by XBOOLE_0:def 3;
      then t in (b /\ c) /\ d by A48,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e by A48,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f by A48,XBOOLE_0:def 3;
      hence thesis by A14,A15,A16,A17,A18,A48,XBOOLE_0:def 3;
    end;
    then A49:x = Intersect FF by A38,XBOOLE_0:def 10;
      x<>{} by A13,EQREL_1:def 6;
    hence thesis by A11,A19,A27,A49,BVFUNC_2:def 1;
  end;
    '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J
  proof
    let x be set;
    assume x in '/\' (G \ {A});
    then consider h being Function, FF being Subset-Family of Y such that
A50:  dom h=(G \ {A}) & rng h = FF &
      (for d being set st d in (G \ {A}) holds h.d in d) &
      x=Intersect FF & x<>{} by BVFUNC_2:def 1;
    A51:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) &
        F in (G \ {A}) & J in (G \ {A})
      by A11,ENUMSET1:29;
    then A52:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F & h.J in J
by A50;
    A53:h.B in rng h & h.C in rng h & h.D in rng h &
    h.E in rng h & h.F in rng h &
        h.J in rng h
      by A50,A51,FUNCT_1:def 5;
    then A54:Intersect FF = meet (rng h) by A50,CANTOR_1:def 3;
    A55:not (x in {{}}) by A50,TARSKI:def 1;
    A56:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J c= x
    proof
      let m be set;
      assume
A57:   m in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J;
      then m in h.B /\ h.C /\ h.D /\ h.E /\ h.F & m in h.J by XBOOLE_0:def 3;
      then A58:m in h.B /\ h.C /\ h.D /\ h.E & m in h.F by XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D & m in h.E & m in h.F by XBOOLE_0:def 3;
      then m in h.B /\ h.C & m in h.D by XBOOLE_0:def 3;
      then A59:m in h.B & m in h.C & m in h.D & m in h.E & m in h.F & m in h.J
        by A57,A58,XBOOLE_0:def 3;
       rng h c= {h.B,h.C,h.D,h.E,h.F,h.J}
      proof
        let u be set;
        assume u in rng h;
        then consider x1 being set such that
A60:      x1 in dom h & u = h.x1 by FUNCT_1:def 5;
          x1=B or x1=C or x1=D or x1=E or x1=F or x1=J
          by A11,A50,A60,ENUMSET1:28;
        hence thesis by A60,ENUMSET1:29;
      end;
      then for y being set holds y in rng h implies m in y
             by A59,ENUMSET1:28;
      hence thesis by A50,A53,A54,SETFAM_1:def 1;
    end;
    A61: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J
    proof
      let m be set;
      assume m in x;
      then A62:m in h.B & m in h.C & m in h.D & m in h.E & m in h.F & m in h.J
                 by A50,A53,A54,SETFAM_1:def 1;
      then m in h.B /\ h.C by XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D by A62,XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D /\ h.E by A62,XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A62,XBOOLE_0:def 3;
      hence thesis by A62,XBOOLE_0:def 3;
    end;
    then A63:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J = x by A56,XBOOLE_0
:def 10;
    set mbc=h.B /\ h.C;
    set mbcd=(h.B /\ h.C) /\ h.D;
    set mbcde=(h.B /\ h.C) /\ h.D /\ h.E;
    set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F;
     mbcdef<>{} by A50,A56,A61,XBOOLE_0:def 10;
    then A64:not (mbcdef in {{}}) by TARSKI:def 1;
     mbcde<>{} by A50,A56,A61,XBOOLE_0:def 10;
    then A65:not (mbcde in {{}}) by TARSKI:def 1;
     mbcd<>{} by A50,A56,A61,XBOOLE_0:def 10;
    then A66:not (mbcd in {{}}) by TARSKI:def 1;
      mbc<>{} by A50,A56,A61,XBOOLE_0:def 10;
    then A67:not (mbc in {{}}) by TARSKI:def 1;
      mbc in INTERSECTION(B,C) by A52,SETFAM_1:def 5;
    then mbc in INTERSECTION(B,C) \ {{}} by A67,XBOOLE_0:def 4;
    then mbc in B '/\' C by PARTIT1:def 4;
    then mbcd in INTERSECTION(B '/\' C,D) by A52,SETFAM_1:def 5;
    then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A66,XBOOLE_0:def 4;
    then mbcd in B '/\' C '/\' D by PARTIT1:def 4;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A52,SETFAM_1:def 5;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A65,XBOOLE_0:def 4
;
    then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A52,SETFAM_1:def 5
;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A64,XBOOLE_0:def 4;
    then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J)
      by A52,A63,SETFAM_1:def 5;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by A55,XBOOLE_0:def 4;
    hence thesis by PARTIT1:def 4;
  end;
  hence thesis by A2,A12,XBOOLE_0:def 10;
end;

theorem Th2:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J
proof
    {A,B,C,D,E,F,J}={A,B} \/ {C,D,E,F,J} by ENUMSET1:57
                .={B,A,C,D,E,F,J} by ENUMSET1:57;
  hence thesis by Th1;
end;

theorem Th3:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J
proof
    {A,B,C,D,E,F,J}={A,B,C} \/ {D,E,F,J} by ENUMSET1:58
                .={A} \/ {B,C} \/ {D,E,F,J} by ENUMSET1:42
                .={A,C,B} \/ {D,E,F,J} by ENUMSET1:42
                .={A,C} \/ {B} \/ {D,E,F,J} by ENUMSET1:43
                .={C,A,B} \/ {D,E,F,J} by ENUMSET1:43
                .={C,A,B,D,E,F,J} by ENUMSET1:58;
  hence thesis by Th1;
end;

theorem Th4:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J
proof
    {A,B,C,D,E,F,J}={A,B} \/ {C,D,E,F,J} by ENUMSET1:57
                .={A,B} \/ ({C,D} \/ {E,F,J}) by ENUMSET1:48
                .={A,B} \/ {D,C,E,F,J} by ENUMSET1:48
                .={A,B,D,C,E,F,J} by ENUMSET1:57;
  hence thesis by Th3;
end;

theorem Th5:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J
proof
    {A,B,C,D,E,F,J}={A,B,C} \/ {D,E,F,J} by ENUMSET1:58
                .={A,B,C} \/ ({D,E} \/ {F,J}) by ENUMSET1:45
                .={A,B,C} \/ {E,D,F,J} by ENUMSET1:45
                .={A,B,C,E,D,F,J} by ENUMSET1:58;
  hence thesis by Th4;
end;

theorem Th6:
 G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J
proof
    {A,B,C,D,E,F,J}={A,B,C,D} \/ {E,F,J} by ENUMSET1:59
                .={A,B,C,D} \/ {F,E,J} by ENUMSET1:99
                .={A,B,C,D,F,E,J} by ENUMSET1:59;
  hence thesis by Th5;
end;

theorem
   G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
implies
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F
proof
    {A,B,C,D,E,F,J}={A,B,C,D,E} \/ {F,J} by ENUMSET1:60
                .={A,B,C,D,E,J,F} by ENUMSET1:60;
  hence thesis by Th6;
end;

theorem Th8:
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
      h.D = D' & h.E = E' & h.F = F' &
      h.J = J'
proof
  let A,B,C,D,E,F,J be set;
  let h be Function;
  let A',B',C',D',E',F',J' be set;
  assume A1:
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (A .--> A');
A2:  dom (A .--> A') = {A} by CQC_LANG:5;
A3:  h.A = A'
      proof
          A in dom (A .--> A') by A2,TARSKI:def 1;
        then h.A = (A .--> A').A by A1,FUNCT_4:14;
        hence thesis by CQC_LANG:6;
      end;
A4:  h.B = B'
      proof
          not B in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.B=((B .--> B') +* (C .--> C') +*
                 (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J')).B by A1,FUNCT_4:12
         .= B' by A1,BVFUNC23:7;
      end;
A5:  h.C = C'
      proof
          not C in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.C=((B .--> B') +* (C .--> C') +*
                 (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J')).C by A1,FUNCT_4:12
         .= C' by A1,BVFUNC23:7;
      end;
A6:  h.D = D'
      proof
          not D in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.D=((B .--> B') +* (C .--> C') +*
                  (D .--> D') +* (E .--> E') +*
                  (F .--> F') +* (J .--> J')).D by A1,FUNCT_4:12
               .= D' by A1,BVFUNC23:7;
      end;
A7:  h.E = E'
      proof
          not E in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.E=((B .--> B') +* (C .--> C') +*
                  (D .--> D') +* (E .--> E') +*
                  (F .--> F') +* (J .--> J')).E by A1,FUNCT_4:12
               .= E' by A1,BVFUNC23:7;
      end;
A8:  h.F = F'
      proof
          not F in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.F=((B .--> B') +* (C .--> C') +*
                  (D .--> D') +* (E .--> E') +*
                  (F .--> F') +* (J .--> J')).F by A1,FUNCT_4:12
               .= F' by A1,BVFUNC23:7;
      end;
        h.J = J'
      proof
          not J in dom (A .--> A') by A1,A2,TARSKI:def 1;
        hence h.J=((B .--> B') +* (C .--> C') +*
                  (D .--> D') +* (E .--> E') +*
                  (F .--> F') +* (J .--> J')).J by A1,FUNCT_4:12
               .= J' by A1,BVFUNC23:7;
      end;
  hence thesis by A3,A4,A5,A6,A7,A8;
end;

theorem Th9:
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J}
proof
  let A,B,C,D,E,F,J be set;
  let h be Function;
  let A',B',C',D',E',F',J' be set;
  assume A1:
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A');
A2:  dom (A .--> A') = {A} by CQC_LANG:5;
        dom h = dom ((B .--> B') +* (C .--> C') +*
             (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J')) \/
        dom (A .--> A') by A1,FUNCT_4:def 1
      .= {J,B,C,D,E,F} \/ dom (A .--> A') by BVFUNC23:8
      .= ({B,C,D,E,F} \/ {J}) \/ {A} by A2,ENUMSET1:51
      .= {B,C,D,E,F,J} \/ {A} by ENUMSET1:55
      .= {A,B,C,D,E,F,J} by ENUMSET1:56;
     hence thesis;
end;

theorem Th10:
for A,B,C,D,E,F,J being set,
h being Function, A',B',C',D',E',F',J' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J}
proof
  let A,B,C,D,E,F,J be set;
  let h be Function;
  let A',B',C',D',E',F',J' be set;
  assume
 h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (A .--> A');
then A1:  dom h = {A,B,C,D,E,F,J} by Th9;
      then A in dom h by ENUMSET1:34;
then A2:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A1,ENUMSET1:34;
then A3:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A1,ENUMSET1:34;
then A4:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A1,ENUMSET1:34;
then A5:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A1,ENUMSET1:34;
then A6:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A1,ENUMSET1:34;
then A7:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A1,ENUMSET1:34;
then A8:  h.J in rng h by FUNCT_1:def 5;
      A9:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A10:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
          x1=A or x1=B or x1=C or x1=D or x1=E or x1=F or x1=J
          by A1,A10,ENUMSET1:33;
        hence thesis by A10,ENUMSET1:34;
      end;
        {h.A,h.B,h.C,h.D,h.E,h.F,h.J} c= rng h
      proof
        let t be set;
        assume t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J};
        hence thesis by A2,A3,A4,A5,A6,A7,A8,ENUMSET1:33;
      end;
  hence thesis by A9,XBOOLE_0:def 10;
end;

theorem
  for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y,
h being Function
st G is independent & G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J
holds
EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) meets EqClass(z,A)
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J be a_partition of Y;
  let z,u be Element of Y;
  let h be Function;
  assume that
A1:G is independent and
A2: G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J;
      reconsider I=EqClass(z,A) as set;
      reconsider GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) as set;
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (A .--> EqClass(z,A));
A3:  dom h = G by A2,Th9;
A4:  h.A = EqClass(z,A) by A2,Th8;
A5:  h.B = EqClass(u,B) by A2,Th8;
A6:  h.C = EqClass(u,C) by A2,Th8;
A7:  h.D = EqClass(u,D) by A2,Th8;
A8:  h.E = EqClass(u,E) by A2,Th8;
A9:  h.F = EqClass(u,F) by A2,Th8;
A10:  h.J = EqClass(u,J) by A2,Th8;
A11:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J
          by A2,ENUMSET1:33;
        hence thesis by A4,A5,A6,A7,A8,A9,A10;
      end;
        A in dom h by A2,A3,ENUMSET1:34;
then A12:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A3,ENUMSET1:34;
then A13:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A3,ENUMSET1:34;
then A14:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A3,ENUMSET1:34;
then A15:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A3,ENUMSET1:34;
then A16:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A3,ENUMSET1:34;
then A17:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A3,ENUMSET1:34;
then A18:  h.J in rng h by FUNCT_1:def 5;
      A19:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J} by Th10;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or
            t=h.J by A19,ENUMSET1:33;
        hence thesis by A4,A5,A6,A7,A8,A9,A10;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A20:  Intersect FF = meet (rng h) by A12,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A3,A11,BVFUNC_2:def 5;
      then consider m being set such that
A21:    m in Intersect FF by XBOOLE_0:def 1;
A22:  m in EqClass(z,A) & m in EqClass(u,B) &
      m in EqClass(u,C) & m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J)
        by A4,A5,A6,A7,A8,A9,A10,A12,A13,A14,A15,A16,A17,A18,A20,A21,SETFAM_1:
def 1;
        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\
           EqClass(u,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass
(u,F)
/\
           EqClass(u,J)
        by BVFUNC14:1;
        then A23:  GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D))
               /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\
 EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A22,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A22,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A22,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) by A22,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) /\ EqClass(u,J) by A22,XBOOLE_0:def 3;
  then m in EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(z,A)
    by A22,A23,XBOOLE_0:def 3;
  hence thesis by XBOOLE_0:def 7;
end;

theorem
  for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G))
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J be a_partition of Y;
  let z,u be Element of Y;
  assume that
A1: G is independent and
A2: G={A,B,C,D,E,F,J} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J &
C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J &
    EqClass(z,C '/\' D '/\' E '/\' F '/\' J)=
    EqClass(u,C '/\' D '/\' E '/\' F '/\' J);
      A3:CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J by A2,Th1;
      A4:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J by A2,Th2;
      reconsider HH=EqClass(z,CompF(B,G)) as set;
      reconsider I=EqClass(z,A) as set;
      reconsider GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J))
       as set;
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (A .--> EqClass(z,A));
A5:  dom h = G by A2,Th9;
A6:  h.A = EqClass(z,A) by A2,Th8;
A7:  h.B = EqClass(u,B) by A2,Th8;
A8:  h.C = EqClass(u,C) by A2,Th8;
A9:  h.D = EqClass(u,D) by A2,Th8;
A10:  h.E = EqClass(u,E) by A2,Th8;
A11:  h.F = EqClass(u,F) by A2,Th8;
A12:  h.J = EqClass(u,J) by A2,Th8;
A13:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J by A2,ENUMSET1:33;
        hence thesis by A6,A7,A8,A9,A10,A11,A12;
      end;
        A in dom h by A2,A5,ENUMSET1:34;
then A14:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A5,ENUMSET1:34;
then A15:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A5,ENUMSET1:34;
then A16:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A5,ENUMSET1:34;
then A17:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A5,ENUMSET1:34;
then A18:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A5,ENUMSET1:34;
then A19:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A5,ENUMSET1:34;
then A20:  h.J in rng h by FUNCT_1:def 5;
      A21:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J} by Th10;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J
          by A21,ENUMSET1:33;
        hence thesis by A6,A7,A8,A9,A10,A11,A12;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A22:  Intersect FF = meet (rng h) by A14,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A5,A13,BVFUNC_2:def 5;
      then consider m being set such that
A23:    m in Intersect FF by XBOOLE_0:def 1;
A24:  m in EqClass(z,A) & m in EqClass(u,B) &
      m in EqClass(u,C) & m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J)
        by A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A17,A18,A19,A20,A22,A23,SETFAM_1
:def 1;
        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\
           EqClass(u,J)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass
(u,F)
/\
           EqClass(u,J)
        by BVFUNC14:1;
        then A25:  GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D))
/\
               EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(z,A)
        by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A24,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A24,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A24,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F)
        by A24,XBOOLE_0:def 3;
      then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u
,E))
/\
          EqClass(u,F) /\ EqClass(u,J)
        by A24,XBOOLE_0:def 3;
      then A26:GG /\ I <> {} by A24,A25,XBOOLE_0:def 3;
      then consider p being set such that
A27:   p in GG /\ I by XBOOLE_0:def 1;
        GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J) &
      not (GG /\ I in {{}})
        by A26,SETFAM_1:def 5,TARSKI:def 1;
      then GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J) \ {
{}}
        by XBOOLE_0:def 4;
      then GG /\ I in (A '/\' ((((B '/\' C) '/\' D) '/\' E) '/\' F '/\' J))
        by PARTIT1:def 4;
      then reconsider p as Element of Y by A27;
      reconsider K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J) as set;
      A28:p in K & K in C '/\' D '/\' E '/\' F '/\' J by T_1TOPSP:def 1;
        p in GG & p in I by A27,XBOOLE_0:def 3;
      then A29:p in I /\ K by A28,XBOOLE_0:def 3;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J) &
      not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J) \ {{}}
        by XBOOLE_0:def 4;
then A30: I /\ K in A '/\' (C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4;
      reconsider L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J) as set;
        GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J)
        by PARTIT1:16;
      then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J)
        by PARTIT1:16;
      then GG = EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J)
        by PARTIT1:16;
      then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J)) by PARTIT1:16
;
then A31: GG c= L by A2,BVFUNC11:3;
A32: p in GG by A27,XBOOLE_0:def 3;
        p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J) by T_1TOPSP:def 1;
      then K meets L by A31,A32,XBOOLE_0:3;
      then K=L by T_1TOPSP:9;
      then A33:z in K by T_1TOPSP:def 1;
        z in I by T_1TOPSP:def 1;
      then A34:z in I /\ K by A33,XBOOLE_0:def 3;
        z in HH by T_1TOPSP:def 1;
      then A35:I /\ K meets HH by A34,XBOOLE_0:3;
        A '/\' (C '/\' D '/\' E '/\' F '/\' J)
    = A '/\' (C '/\' D '/\' E '/\' F) '/\' J by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J by PARTIT1:16
   .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J by PARTIT1:16
   .= A '/\' C '/\' D '/\' E '/\' F '/\' J by PARTIT1:16;
      then p in HH by A4,A29,A30,A35,EQREL_1:def 6;
  hence thesis by A3,A32,XBOOLE_0:3;
end;

theorem Th13:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M
proof
  assume A1: G={A,B,C,D,E,F,J,M} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M &
  C<>D & C<>E & C<>F & C<>J & C<>M &
  D<>E & D<>F & D<>J & D<>M &
  E<>F & E<>J & E<>M &
  F<>J & F<>M & J<>M;
  A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7;
    G \ {A}={A} \/ {B,C,D,E,F,J,M} \ {A} by A1,ENUMSET1:62;
  then A3:G \ {A} = ({A} \ {A}) \/ ({B,C,D,E,F,J,M} \ {A}) by XBOOLE_1:42;
  A4:not B in {A} by A1,TARSKI:def 1;
  A5:not C in {A} by A1,TARSKI:def 1;
  A6:not D in {A} by A1,TARSKI:def 1;
  A7:not E in {A} by A1,TARSKI:def 1;
  A8:not F in {A} by A1,TARSKI:def 1;
  A9:not J in {A} by A1,TARSKI:def 1;
  A10:not M in {A} by A1,TARSKI:def 1;
    {B,C,D,E,F,J,M} \ {A}
  =({B} \/ {C,D,E,F,J,M}) \ {A} by ENUMSET1:56
 .=({B} \ {A}) \/ ({C,D,E,F,J,M} \ {A}) by XBOOLE_1:42
 .={B} \/ ({C,D,E,F,J,M} \ {A}) by A4,ZFMISC_1:67
 .={B} \/ (({C} \/ {D,E,F,J,M}) \ {A}) by ENUMSET1:51
 .={B} \/ (({C} \ {A}) \/ ({D,E,F,J,M} \ {A})) by XBOOLE_1:42
 .={B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J,M}) \ {A})) by ENUMSET1:48
 .={B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J,M} \ {A}))) by XBOOLE_1:42
 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J,M} \ {A}))) by A6,A7,ZFMISC_1:72
 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ {M} \ {A}))) by ENUMSET1:43
 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ (({F,J} \ {A}) \/
 ({M} \ {A})))) by XBOOLE_1:42
 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ ({M} \ {A}))))
    by A8,A9,ZFMISC_1:72
 .={B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ ({M} \ {A})))) by A5,ZFMISC_1:67
 .={B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ {M}))) by A10,ZFMISC_1:67
 .={B} \/ ({C} \/ ({D,E} \/ {F,J,M})) by ENUMSET1:43
 .={B} \/ ({C} \/ {D,E,F,J,M}) by ENUMSET1:48
 .={B} \/ {C,D,E,F,J,M} by ENUMSET1:51
 .={B,C,D,E,F,J,M} by ENUMSET1:56;
  then A11:G \ {A} = {} \/ {B,C,D,E,F,J,M} by A3,XBOOLE_1:37;
  A12:B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M c= '/\' (G \ {A})
  proof
    let x be set;
    assume A13:x in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}}
      by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) & not x in
{{}}
      by XBOOLE_0:def 4;
    then consider bcdefj,m being set such that
A14:  bcdefj in B '/\' C '/\' D '/\' E '/\' F '/\' J & m in M & x = bcdefj /\ m
        by SETFAM_1:def 5;
      bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by A14,PARTIT1:def 4;
    then bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) &
    not bcdefj in {{}}
      by XBOOLE_0:def 4;
    then consider bcdef,j being set such that
A15:  bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & bcdefj = bcdef /\ j
      by SETFAM_1:def 5;
      bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A15,PARTIT1:def 4;
    then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}}
      by XBOOLE_0:def 4;
    then consider bcde,f being set such that
A16:  bcde in B '/\' C '/\' D '/\' E & f in F &
      bcdef = bcde /\ f by SETFAM_1:def 5;
      bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A16,PARTIT1:def 4;
    then bcde in INTERSECTION(B '/\' C '/\' D,E) &
         not bcde in {{}} by XBOOLE_0:def 4;
    then consider bcd,e being set such that
A17:  bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5;
      bcd in INTERSECTION(B '/\' C,D) \ {{}} by A17,PARTIT1:def 4;
    then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4;
    then consider bc,d being set such that
A18:  bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5;
      bc in INTERSECTION(B,C) \ {{}} by A18,PARTIT1:def 4;
    then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4;
    then consider b,c being set such that
A19:  b in B & c in C & bc = b /\ c by SETFAM_1:def 5;
    set h = (B .--> b) +* (C .--> c) +* (D .--> d) +*
            (E .--> e) +* (F .--> f) +* (J .--> j) +* (M .--> m);
A20:    dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f)
        +* (J .--> j) +* (M .--> m))
      = {M,B,C,D,E,F,J} by Th9
     .= {M} \/ {B,C,D,E,F,J} by ENUMSET1:56
     .= {B,C,D,E,F,J,M} by ENUMSET1:61;
A21:  h.D = d by A1,Th8;
A22:  h.B = b by A1,Th8;
A23:  h.C = c by A1,Th8;
A24:  h.E = e by A1,Th8;
A25:  h.F = f by A1,Th8;
A26:  h.J = j by A1,Th8;
A27:  h.M = m by A1,Th8;
A28:  for p being set st p in (G \ {A}) holds h.p in p
      proof
        let p be set;
        assume p in (G \ {A});
         then p=D or p=B or p=C or p=E or p=F or p=J or p=M
          by A11,ENUMSET1:33;
        hence thesis by A1,A14,A15,A16,A17,A18,A19,Th8;
      end;
    A29: D in dom h by A20,ENUMSET1:34;
then A30:  h.D in rng h by FUNCT_1:def 5;
A31:   B in dom h by A20,ENUMSET1:34;
A32:   C in dom h by A20,ENUMSET1:34;
A33:   E in dom h by A20,ENUMSET1:34;
A34:   F in dom h by A20,ENUMSET1:34;
A35:   J in dom h by A20,ENUMSET1:34;
A36:   M in dom h by A20,ENUMSET1:34;
      A37:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A38:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
           x1=D or x1=B or x1=C or x1=E or x1=F or x1=J or x1=M
             by A20,A38,ENUMSET1:33;
        hence thesis by A38,ENUMSET1:34;
      end;
      A39: {h.B,h.C,h.D,h.E,h.F,h.J,h.M} c= rng h
      proof
        let t be set;
        assume t in {h.B,h.C,h.D,h.E,h.F,h.J,h.M};
         then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J or t=h.M
                     by ENUMSET1:33;
        hence thesis by A29,A31,A32,A33,A34,A35,A36,FUNCT_1:def 5;
      end;
      then A40:rng h = {h.B,h.C,h.D,h.E,h.F,h.J,h.M} by A37,XBOOLE_0:def 10;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
         then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J or t=h.M
                     by A37,ENUMSET1:33;
        hence thesis by A14,A15,A16,A17,A18,A19,A21,A22,A23,A24,A25,A26,A27;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
      reconsider h as Function;
A41:  Intersect FF = meet (rng h) by A30,CANTOR_1:def 3;
    A42:x c= Intersect FF
    proof
      let u be set;
      assume A43:u in x;
      A44:FF<>{} by A40,ENUMSET1:34;
        for y be set holds y in FF implies u in y
      proof
        let y be set;
        assume A45: y in FF;
          now per cases by A37,A45,ENUMSET1:33;
        case
A46:     y=h.D;
          u in (d /\ ((b /\ c) /\ e)) /\ f /\ j /\ m
           by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j /\ m by XBOOLE_1:16;
        then u in d /\ (((b /\ c) /\ e /\ f) /\ j) /\ m by XBOOLE_1:16;
        then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m) by XBOOLE_1:16;
        hence thesis by A21,A46,XBOOLE_0:def 3;
        case
A47:     y=h.B;
          u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m
         by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) /\ m by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) /\ m by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) /\ m by XBOOLE_1:16;
        then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) /\ m by XBOOLE_1:16;
        then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) /\ m by XBOOLE_1:16;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b /\ m by XBOOLE_1:16;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ b by XBOOLE_1:16;
        hence thesis by A22,A47,XBOOLE_0:def 3;
        case
A48:     y=h.C;
          u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m
           by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m by XBOOLE_1:16;
        then u in c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m) by XBOOLE_1:16;
        hence thesis by A23,A48,XBOOLE_0:def 3;
        case
A49:     y=h.E;
          u in ((b /\ c) /\ d) /\ (f /\ e) /\ j /\ m
             by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) /\ m by XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) /\ m by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e /\ m by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ e by XBOOLE_1:16;
        hence thesis by A24,A49,XBOOLE_0:def 3;
        case
A50:     y=h.F;
          u in (((b /\ c) /\ d) /\ e) /\ j /\ f /\ m
         by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ f by XBOOLE_1:16;
        hence thesis by A25,A50,XBOOLE_0:def 3;
        case
A51:     y=h.J;
          u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ j
            by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16;
        hence thesis by A26,A51,XBOOLE_0:def 3;
        case y=h.M;
        hence thesis by A14,A27,A43,XBOOLE_0:def 3;
        end;
        hence thesis;
      end;
      then u in meet FF by A44,SETFAM_1:def 1;
      hence thesis by A44,CANTOR_1:def 3;
    end;
      Intersect FF c= x
    proof
      let t be set;
      assume
A52:   t in Intersect FF;
        h.B in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.C in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.D in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.E in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.F in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.J in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} &
      h.M in {h.B,h.C,h.D,h.E,h.F,h.J,h.M}
        by ENUMSET1:34;
      then A53:t in b & t in c & t in d & t in e & t in f & t in j & t in m
        by A21,A22,A23,A24,A25,A26,A27,A39,A41,A52,SETFAM_1:def 1;
      then t in b /\ c by XBOOLE_0:def 3;
      then t in (b /\ c) /\ d by A53,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e by A53,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f by A53,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f /\ j by A53,XBOOLE_0:def 3;
      hence thesis by A14,A15,A16,A17,A18,A19,A53,XBOOLE_0:def 3;
    end;
    then A54:x = Intersect FF by A42,XBOOLE_0:def 10;
      x<>{} by A13,EQREL_1:def 6;
    hence thesis by A11,A20,A28,A54,BVFUNC_2:def 1;
  end;

    '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M
  proof
    let x be set;
    assume x in '/\' (G \ {A});
    then consider h being Function, FF being Subset-Family of Y such that
A55:  dom h=(G \ {A}) & rng h = FF &
      (for d being set st d in (G \ {A}) holds h.d in d) &
      x=Intersect FF & x<>{} by BVFUNC_2:def 1;
    A56:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) &
        F in (G \ {A}) & J in (G \ {A}) & M in (G \ {A})
        by A11,ENUMSET1:34;
    then A57:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F &
    h.J in J & h.M in M by A55;
    A58:h.B in rng h & h.C in rng h &
    h.D in rng h & h.E in rng h & h.F in rng h &
        h.J in rng h & h.M in rng h by A55,A56,FUNCT_1:def 5;
    then A59:Intersect FF = meet (rng h) by A55,CANTOR_1:def 3;
    A60:not (x in {{}}) by A55,TARSKI:def 1;
    A61:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M c= x
    proof
      let p be set;
      assume p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M;
      then A62:p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J & p in h.M
        by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F & p in h.J by XBOOLE_0:def 3;
      then A63:p in h.B /\ h.C /\ h.D /\ h.E & p in h.F by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D & p in h.E & p in h.F by XBOOLE_0:def 3;
      then p in h.B /\ h.C & p in h.D by XBOOLE_0:def 3;
      then A64:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F &
      p in h.J & p in h.M
        by A62,A63,XBOOLE_0:def 3;
       rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M}
      proof
        let u be set;
        assume u in rng h;
        then consider x1 being set such that
A65:      x1 in dom h & u = h.x1 by FUNCT_1:def 5;
          x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M
          by A11,A55,A65,ENUMSET1:33;
        hence thesis by A65,ENUMSET1:34;
      end;
      then for y being set holds y in rng h implies p in y
              by A64,ENUMSET1:33;
      hence thesis by A55,A58,A59,SETFAM_1:def 1;
    end;
    A66: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M
    proof
      let p be set;
      assume p in x;
      then A67:p in h.B & p in h.C & p in h.D &
      p in h.E & p in h.F & p in h.J & p in h.M
        by A55,A58,A59,SETFAM_1:def 1;
      then p in h.B /\ h.C by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D by A67,XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E by A67,XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A67,XBOOLE_0:def 3;
      then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J by A67,XBOOLE_0:
def 3
;
      hence thesis by A67,XBOOLE_0:def 3;
    end;
    then A68:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M = x
      by A61,XBOOLE_0:def 10;
    set mbc=h.B /\ h.C;
    set mbcd=(h.B /\ h.C) /\ h.D;
    set mbcde=(h.B /\ h.C) /\ h.D /\ h.E;
    set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F;
    set mbcdefj=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J;
      mbcdefj<>{} by A55,A61,A66,XBOOLE_0:def 10;
    then A69:not (mbcdefj in {{}}) by TARSKI:def 1;
     mbcdef<>{} by A55,A61,A66,XBOOLE_0:def 10;
    then A70:not (mbcdef in {{}}) by TARSKI:def 1;
      mbcde<>{} by A55,A61,A66,XBOOLE_0:def 10;
    then A71:not (mbcde in {{}}) by TARSKI:def 1;
     mbcd<>{} by A55,A61,A66,XBOOLE_0:def 10;
    then A72:not (mbcd in {{}}) by TARSKI:def 1;
      mbc<>{} by A55,A61,A66,XBOOLE_0:def 10;
    then A73:not (mbc in {{}}) by TARSKI:def 1;
      mbc in INTERSECTION(B,C) by A57,SETFAM_1:def 5;
    then mbc in INTERSECTION(B,C) \ {{}} by A73,XBOOLE_0:def 4;
    then mbc in B '/\' C by PARTIT1:def 4;
    then mbcd in INTERSECTION(B '/\' C,D) by A57,SETFAM_1:def 5;
    then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A72,XBOOLE_0:def 4;
    then mbcd in B '/\' C '/\' D by PARTIT1:def 4;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A57,SETFAM_1:def 5;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A71,XBOOLE_0:def 4
;
    then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A57,SETFAM_1:def 5
;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A70,XBOOLE_0:def 4;
    then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4;
    then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J)
      by A57,SETFAM_1:def 5;
    then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by A69,XBOOLE_0:def 4;
    then mbcdefj in (B '/\' C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M)
      by A57,A68,SETFAM_1:def 5;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}}
      by A60,XBOOLE_0:def 4;
    hence thesis by PARTIT1:def 4;
  end;
  hence thesis by A2,A12,XBOOLE_0:def 10;
end;

theorem Th14:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M
proof
    {A,B,C,D,E,F,J,M}={A,B} \/ {C,D,E,F,J,M} by ENUMSET1:63
     .={B,A,C,D,E,F,J,M} by ENUMSET1:63;
  hence thesis by Th13;
end;

theorem Th15:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M
proof
    {A,B,C,D,E,F,J,M} ={A,B,C} \/ {D,E,F,J,M} by ENUMSET1:64
     .={A} \/ {B,C} \/ {D,E,F,J,M} by ENUMSET1:42
     .={A,C,B} \/ {D,E,F,J,M} by ENUMSET1:42
    .={A,C,B,D,E,F,J,M} by ENUMSET1:64;
  hence thesis by Th14;
end;

theorem Th16:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M
proof
    {A,B,C,D,E,F,J,M} ={A,B} \/ {C,D,E,F,J,M} by ENUMSET1:63
    .={A,B} \/ ({C,D} \/ {E,F,J,M}) by ENUMSET1:52
    .={A,B} \/ {D,C,E,F,J,M} by ENUMSET1:52
    .={A,B,D,C,E,F,J,M} by ENUMSET1:63;
  hence thesis by Th15;
end;

theorem Th17:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M
proof
    {A,B,C,D,E,F,J,M} ={A,B,C} \/ {D,E,F,J,M} by ENUMSET1:64
   .={A,B,C} \/ ({D,E} \/ {F,J,M}) by ENUMSET1:48
   .={A,B,C} \/ ({E,D,F,J,M}) by ENUMSET1:48
   .={A,B,C,E,D,F,J,M} by ENUMSET1:64;
  hence thesis by Th16;
end;

theorem Th18:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M
proof
    {A,B,C,D,E,F,J,M} ={A,B,C,D} \/ {E,F,J,M} by ENUMSET1:65
   .={A,B,C,D} \/ ({E,F} \/ {J,M}) by ENUMSET1:45
   .={A,B,C,D} \/ ({F,E,J,M}) by ENUMSET1:45
   .={A,B,C,D,F,E,J,M} by ENUMSET1:65;
  hence thesis by Th17;
end;

theorem Th19:
 G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M
proof
    {A,B,C,D,E,F,J,M} ={A,B,C,D,E} \/ {F,J,M} by ENUMSET1:66
    .={A,B,C,D,E} \/ ({J,F} \/ {M}) by ENUMSET1:43
    .={A,B,C,D,E} \/ ({J,F,M}) by ENUMSET1:43
    .={A,B,C,D,E,J,F,M} by ENUMSET1:66;
  hence thesis by Th18;
end;

theorem
   G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
implies
CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J
proof
    {A,B,C,D,E,F,J,M} ={A,B,C,D,E,F} \/ {J,M} by ENUMSET1:67
   .={A,B,C,D,E,F,M,J} by ENUMSET1:67;
  hence thesis by Th19;
end;

theorem Th21:
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (A .--> A')
holds h.B = B' & h.C = C' &
      h.D = D' & h.E = E' & h.F = F' &
      h.J = J'
proof
  let A,B,C,D,E,F,J,M be set;
  let h be Function;
  let A',B',C',D',E',F',J',M' be set;
  assume A1:A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M &
  C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M &
  E<>F & E<>J & E<>M & F<>J & F<>M & J<>M &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A');
A2:  dom (A .--> A') = {A} by CQC_LANG:5;
A3:  h.B = B'
      proof
          not B in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J') +* (M .--> M')).B by A1,FUNCT_4:12
          .= B' by A1,Th8;
        hence thesis;
      end;
A4:  h.C = C'
      proof
          not C in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M')).C
         by A1,FUNCT_4:12;
        hence thesis by A1,Th8;
      end;
A5:  h.D = D'
      proof
          not D in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M')).D by A1,FUNCT_4:12
          .= D' by A1,Th8;
        hence thesis;
      end;
A6:  h.E = E'
      proof
          not E in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J') +* (M .--> M')).E by A1,FUNCT_4:12
              .= E' by A1,Th8;
        hence thesis;
      end;
A7:  h.F = F'
      proof
          not F in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M')).F by A1,FUNCT_4:12
          .= F' by A1,Th8;
        hence thesis;
      end;
        h.J = J'
      proof
          not J in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.J=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M')).J by A1,FUNCT_4:12
          .= J' by A1,Th8;
        hence thesis;
      end;
  hence thesis by A3,A4,A5,A6,A7;
end;

theorem Th22:
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J,M}
proof
  let A,B,C,D,E,F,J,M be set;
  let h be Function;
  let A',B',C',D',E',F',J',M' be set;
  assume A1:
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (A .--> A');
A2:  dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
           (F .--> F') +* (J .--> J') +* (M .--> M'))
       = {M,B,C,D,E,F,J} by Th9
      .= {M} \/ {B,C,D,E,F,J} by ENUMSET1:56
      .= {B,C,D,E,F,J,M} by ENUMSET1:61;
    dom (A .--> A') = {A} by CQC_LANG:5;
  then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
       (F .--> F') +* (J .--> J') +* (M .--> M') +*(A .--> A'))
       = {B,C,D,E,F,J,M} \/ {A} by A2,FUNCT_4:def 1
      .= {A,B,C,D,E,F,J,M} by ENUMSET1:62;
  hence thesis by A1;
end;

theorem Th23:
for A,B,C,D,E,F,J,M being set, h being Function,
A',B',C',D',E',F',J',M' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M}
proof
  let A,B,C,D,E,F,J,M be set;
  let h be Function;
  let A',B',C',D',E',F',J',M' be set;
  assume
 h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (A .--> A');
then A1:  dom h = {A,B,C,D,E,F,J,M} by Th22;
      then A in dom h by ENUMSET1:39;
then A2:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A1,ENUMSET1:39;
then A3:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A1,ENUMSET1:39;
then A4:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A1,ENUMSET1:39;
then A5:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A1,ENUMSET1:39;
then A6:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A1,ENUMSET1:39;
then A7:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A1,ENUMSET1:39;
then A8:  h.J in rng h by FUNCT_1:def 5;
        M in dom h by A1,ENUMSET1:39;
then A9:  h.M in rng h by FUNCT_1:def 5;
      A10:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A11:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
            x1=A or x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M
             by A1,A11,ENUMSET1:38;
        hence thesis by A11,ENUMSET1:39;
      end;
        {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} c= rng h
      proof
        let t be set;
        assume t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M};
        hence thesis by A2,A3,A4,A5,A6,A7,A8,A9,ENUMSET1:38;
      end;
  hence thesis by A10,XBOOLE_0:def 10;
end;

theorem
  for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M being a_partition of Y
, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\
      EqClass(z,A) <> {}
proof
  let a be Element of Funcs(Y,BOOLEAN);
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M be a_partition of Y;
  let z,u be Element of Y;
  let h be Function;
  assume that
A1:G is independent and
A2: G={A,B,C,D,E,F,J,M} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M &
  C<>D & C<>E & C<>F & C<>J & C<>M &
  D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M &
  F<>J & F<>M & J<>M;
      reconsider I=EqClass(z,A) as set;
      reconsider GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M)
       as set;
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (M .--> EqClass(u,M)) +*
              (A .--> EqClass(z,A));
A3:  dom h = G by A2,Th22;
A4:  h.A = EqClass(z,A) by YELLOW14:3;
A5:  h.B = EqClass(u,B) by A2,Th21;
A6:  h.C = EqClass(u,C) by A2,Th21;
A7:  h.D = EqClass(u,D) by A2,Th21;
A8:  h.E = EqClass(u,E) by A2,Th21;
A9:  h.F = EqClass(u,F) by A2,Th21;
A10:  h.J = EqClass(u,J) by A2,Th21;
A11:  h.M = EqClass(u,M) by A2,BVFUNC14:15;
A12:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M
          by A2,ENUMSET1:38;
        hence thesis by A4,A5,A6,A7,A8,A9,A10,A11;
      end;

        A in dom h by A2,A3,ENUMSET1:39;
then A13:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A3,ENUMSET1:39;
then A14:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A3,ENUMSET1:39;
then A15:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A3,ENUMSET1:39;
then A16:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A3,ENUMSET1:39;
then A17:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A3,ENUMSET1:39;
then A18:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A3,ENUMSET1:39;
then A19:  h.J in rng h by FUNCT_1:def 5;
        M in dom h by A2,A3,ENUMSET1:39;
then A20:  h.M in rng h by FUNCT_1:def 5;

      A21:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} by Th23;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or
            t=h.J or t=h.M by A21,ENUMSET1:38;
        hence thesis by A4,A5,A6,A7,A8,A9,A10,A11;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A22:  Intersect FF = meet (rng h) by A13,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A3,A12,BVFUNC_2:def 5;
      then consider m being set such that
A23:    m in Intersect FF by XBOOLE_0:def 1;
A24:  m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) &
      m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) &
    m in EqClass(u,M)
          by A4,A5,A6,A7,A8,A9,A10,A11,A13,A14,A15,A16,A17,A18,A19,A20,A22,A23,
SETFAM_1:def 1;

        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\
           EqClass(u,M)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J) /\
           EqClass(u,M)
        by BVFUNC14:1;
      then GG = (EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E)) /\ EqClass(u,F)
/\
           EqClass(u,J) /\ EqClass(u,M)
        by BVFUNC14:1;
      then GG = ((((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\
           EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M)
        by BVFUNC14:1;
then A25:  GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D))
               /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\
 EqClass(u,M))
               /\ EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A24,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A24,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A24,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F)
        by A24,XBOOLE_0:def 3;
      then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,
E)
        /\ EqClass(u,F) /\ EqClass(u,J)
        by A24,XBOOLE_0:def 3;
      then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,
E)
        /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M)
        by A24,XBOOLE_0:def 3;
  hence thesis by A24,A25,XBOOLE_0:def 3;
end;

theorem
  for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M being a_partition of Y
, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J,M} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M &
D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G))
proof
  let a be Element of Funcs(Y,BOOLEAN);
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M be a_partition of Y;
  let z,u be Element of Y;
  assume that
A1:G is independent and
A2: G={A,B,C,D,E,F,J,M} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M &
  C<>D & C<>E & C<>F & C<>J & C<>M &
  D<>E & D<>F & D<>J & D<>M &
  E<>F & E<>J & E<>M &
  F<>J & F<>M & J<>M &
  EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)=
  EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M);
      A3:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M
        by A2,Th14;
      set HH=EqClass(z,CompF(B,G)),
          I=EqClass(z,A),
          GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J '/\' M));
A4:  GG=EqClass(u,CompF(A,G)) by A2,Th13;
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (M .--> EqClass(u,M)) +*
              (A .--> EqClass(z,A));
A5:  dom h = G by A2,Th22;
A6:  h.A = EqClass(z,A) by YELLOW14:3;
A7:  h.B = EqClass(u,B) by A2,Th21;
A8:  h.C = EqClass(u,C) by A2,Th21;
A9:  h.D = EqClass(u,D) by A2,Th21;
A10:  h.E = EqClass(u,E) by A2,Th21;
A11:  h.F = EqClass(u,F) by A2,Th21;
A12:  h.J = EqClass(u,J) by A2,Th21;
A13:  h.M = EqClass(u,M) by A2,BVFUNC14:15;

A14:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M
          by A2,ENUMSET1:38;
        hence thesis by A6,A7,A8,A9,A10,A11,A12,A13;
      end;

        A in dom h by A2,A5,ENUMSET1:39;
then A15:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A5,ENUMSET1:39;
then A16:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A5,ENUMSET1:39;
then A17:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A5,ENUMSET1:39;
then A18:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A5,ENUMSET1:39;
then A19:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A5,ENUMSET1:39;
then A20:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A5,ENUMSET1:39;
then A21:  h.J in rng h by FUNCT_1:def 5;
        M in dom h by A2,A5,ENUMSET1:39;
then A22:  h.M in rng h by FUNCT_1:def 5;

      A23:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} by Th23;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J
         or t=h.M
          by A23,ENUMSET1:38;
        hence thesis by A6,A7,A8,A9,A10,A11,A12,A13;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A24:  Intersect FF = meet (rng h) by A15,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A5,A14,BVFUNC_2:def 5;
      then consider m being set such that
A25:    m in Intersect FF by XBOOLE_0:def 1;
A26:  m in EqClass(z,A) & m in EqClass(u,B) &
      m in EqClass(u,C) & m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) &
    m in EqClass(u,M)
        by A6,A7,A8,A9,A10,A11,A12,A13,A15,A16,A17,A18,A19,A20,A21,A22,A24,A25,
SETFAM_1:def 1;
        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\
           EqClass(u,M)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J) /\
           EqClass(u,M)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\
           EqClass(u,J) /\ EqClass(u,M)
        by BVFUNC14:1;
      then GG = ((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\
           EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M)
        by BVFUNC14:1;
then A27:  GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
               EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M))
/\
               EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A26,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A26,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A26,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F)
        by A26,XBOOLE_0:def 3;
      then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u
,E))
/\
          EqClass(u,F) /\ EqClass(u,J)
        by A26,XBOOLE_0:def 3;
      then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
          EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M)
        by A26,XBOOLE_0:def 3;
      then GG /\ I <> {} by A26,A27,XBOOLE_0:def 3;
      then consider p being set such that
A28:   p in GG /\ I by XBOOLE_0:def 1;
      reconsider p as Element of Y by A28;
      reconsider K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M) as set;
      A29:p in K & K in C '/\' D '/\' E '/\' F '/\' J '/\' M by T_1TOPSP:def 1;
        p in GG & p in I by A28,XBOOLE_0:def 3;
      then A30:p in I /\ K by A29,XBOOLE_0:def 3;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M) &
      not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M) \ {
{}}
        by XBOOLE_0:def 4;
then A31: I /\ K in A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M) by PARTIT1:
def 4;
      reconsider L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M) as set;
        GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J '/\' M)
        by PARTIT1:16;
      then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J '/\' M)
        by PARTIT1:16;
      then GG = EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J '/\' M)
        by PARTIT1:16;
      then GG = EqClass(u,B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)
        by PARTIT1:16;
      then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M))
        by PARTIT1:16;
then A32: GG c= L by A2,BVFUNC11:3;
A33: p in GG by A28,XBOOLE_0:def 3;
        p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M)
      by T_1TOPSP:def 1;
      then K meets L by A32,A33,XBOOLE_0:3;
      then K=L by T_1TOPSP:9;
      then A34:z in K by T_1TOPSP:def 1;
        z in I by T_1TOPSP:def 1;
      then A35:z in I /\ K by A34,XBOOLE_0:def 3;
        z in HH by T_1TOPSP:def 1;
      then A36:I /\ K meets HH by A35,XBOOLE_0:3;
        A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M)
    = A '/\' (C '/\' D '/\' E '/\' F '/\' J) '/\' M by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E '/\' F) '/\' J '/\' M by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J '/\' M by PARTIT1:16
   .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J '/\' M by PARTIT1:16
   .= A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M by PARTIT1:16;
      then p in HH by A3,A30,A31,A36,EQREL_1:def 6;
  hence thesis by A4,A33,XBOOLE_0:3;
end;

scheme UI10
  {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10()->set,
   P[set,set,set,set,set,set,set,set,set,set]}:
  P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8(),x9(),x10()]
provided
 A1: for x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 being set
         holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] by A1;

Lm1: x in union({X,{y}}) iff x in X or x=y
  proof
A1:  x in union({X,{y}}) implies x in X or x in {y}
     proof assume x in union({X,{y}});
       then ex Z be set st x in Z & Z in {X,{y}} by TARSKI:def 4;
       hence thesis by TARSKI:def 2;
     end;
A2:  X in {X,{y}} & {y} in {X,{y}} by TARSKI:def 2;
      x in {y} iff x=y by TARSKI:def 1;
   hence thesis by A1,A2,TARSKI:def 4;
  end;

definition
   let x1,x2,x3,x4,x5,x6,x7,x8,x9;
    func { x1,x2,x3,x4,x5,x6,x7,x8,x9 } -> set means
:Def1: x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or
                  x=x8 or x=x9;
  existence
  proof
    take union({{x1,x2,x3,x4,x5,x6,x7,x8},{x9}});
    let x;
       x in { x1,x2,x3,x4,x5,x6,x7,x8 } iff
         x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x = x6 or
         x=x7 or x=x8 by ENUMSET1:38,39;
    hence thesis by Lm1;
  end;
  uniqueness proof
  defpred _P[set] means
 $1=x1 or $1=x2 or $1=x3 or $1=x4 or $1=x5 or $1=x6 or $1=x7 or $1=x8 or $1=x9;
   thus for X, Y being set st
    (for x being set holds x in X iff _P[x]) &
    (for x being set holds x in Y iff _P[x])
     holds X = Y from SetEq;
  end;
end;

Lm2:
    x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } iff
      x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9
 proof
   defpred P[set,set,set,set,set,set,set,set,set] means
     for X being set holds X = { $1,$2,$3,$4,$5,$6,$7,$8,$9 } iff
     for x holds x in
     X iff x=$1 or x=$2 or x=$3 or x=$4 or x=$5 or x = $6 or x = $7
       or x = $8 or x = $9;
A1: for x1,x2,x3,x4,x5,x6,x7,x8,x9 holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9]
      by Def1;
    P[x1,x2,x3,x4,x5,x6,x7,x8,x9] from UI9(A1);
    hence thesis;
 end;

theorem
      x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } implies
      x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8
   or x=x9 by Lm2;

Lm3: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 }
proof
      now let x;
A1:    x in { x1,x2,x3,x4 } iff x=x1 or x=x2 or x=x3 or x=x4
         by ENUMSET1:18,19;
         x in { x5,x6,x7,x8,x9 } iff x=x5 or x=x6 or x=x7 or x=x8
                               or x=x9 by ENUMSET1:23,24;
     hence x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } iff
        x in { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by A1,Lm2,XBOOLE_0:def 2;
    end;
   hence thesis by TARSKI:2;
end;

theorem Th27:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= ({ x1 } \/ { x2,x3,x4 }) \/ { x5,x6,x7,x8,x9 } by ENUMSET1:44
 .= { x1 } \/ ({ x2,x3,x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4
 .= { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 } by ENUMSET1:64;
end;

theorem Th28:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2 } \/ { x3,x4 } \/ { x5,x6,x7,x8,x9 } by ENUMSET1:45
 .= { x1,x2 } \/ ({ x3,x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4
 .= { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 } by ENUMSET1:57;
end;

theorem Th29:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2,x3 } \/ { x4 } \/ { x5,x6,x7,x8,x9 } by ENUMSET1:46
 .= { x1,x2,x3 } \/ ({ x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4
 .= { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 } by ENUMSET1:51;
end;

theorem
  { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
;

theorem Th31:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2,x3,x4 } \/ ({x5 } \/ { x6,x7,x8,x9 }) by ENUMSET1:47
 .= { x1,x2,x3,x4 } \/ {x5 } \/ { x6,x7,x8,x9 } by XBOOLE_1:4
 .= { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 } by ENUMSET1:50;
end;

theorem Th32:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2,x3,x4 } \/ ({ x5,x6 } \/ { x7,x8,x9 }) by ENUMSET1:48
 .= { x1,x2,x3,x4 } \/ { x5,x6 } \/ { x7,x8,x9 } by XBOOLE_1:4
 .= { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 } by ENUMSET1:54;
end;

theorem Th33:
 { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2,x3,x4 } \/ ({ x5,x6,x7 } \/ { x8,x9 }) by ENUMSET1:49
 .= { x1,x2,x3,x4 } \/ { x5,x6,x7 } \/ { x8,x9 } by XBOOLE_1:4
 .= { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 } by ENUMSET1:59;
end;

theorem
   { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 }
proof
  thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 }
  = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3
 .= { x1,x2,x3,x4 } \/ ({ x5,x6,x7,x8 } \/ { x9 }) by ENUMSET1:50
 .= { x1,x2,x3,x4 } \/ { x5,x6,x7,x8 } \/ { x9 } by XBOOLE_1:4
 .= { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 } by ENUMSET1:65;
end;

theorem Th35:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
  assume A1: G={A,B,C,D,E,F,J,M,N} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
  C<>D & C<>E & C<>F & C<>J & C<>M & C<>N &
  D<>E & D<>F & D<>J & D<>M & D<>N &
  E<>F & E<>J & E<>M & E<>N &
  F<>J & F<>M & F<>N & J<>M & J<>N & M<>N;
  A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7;
    G \ {A}={A} \/ {B,C,D,E,F,J,M,N} \ {A} by A1,Th27;
  then A3:G \ {A} = ({A} \ {A}) \/ ({B,C,D,E,F,J,M,N} \ {A}) by XBOOLE_1:42;
  A4:not B in {A} by A1,TARSKI:def 1;
  A5:not C in {A} by A1,TARSKI:def 1;
  A6:not D in {A} by A1,TARSKI:def 1;
  A7:not E in {A} by A1,TARSKI:def 1;
  A8:not F in {A} by A1,TARSKI:def 1;
  A9:not J in {A} by A1,TARSKI:def 1;
  A10:not M in {A} by A1,TARSKI:def 1;
  A11:not N in {A} by A1,TARSKI:def 1;
  A12:{D,E} \ {A} = {D,E} by A6,A7,ZFMISC_1:72;
    {B,C,D,E,F,J,M,N} \ {A}
  = ({B} \/ {C,D,E,F,J,M,N}) \ {A} by ENUMSET1:62
 .= ({B} \ {A}) \/ ({C,D,E,F,J,M,N} \ {A}) by XBOOLE_1:42
 .= {B} \/ ({C,D,E,F,J,M,N} \ {A}) by A4,ZFMISC_1:67
 .= {B} \/ (({C} \/ {D,E,F,J,M,N}) \ {A}) by ENUMSET1:56
 .= {B} \/ (({C} \ {A}) \/ ({D,E,F,J,M,N} \ {A})) by XBOOLE_1:42
 .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J,M,N}) \ {A})) by ENUMSET1:52
 .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J,M,N} \ {A}))) by XBOOLE_1:42
 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/
 {M,N} \ {A}))) by A12,ENUMSET1:45
 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ (({F,J} \ {A}) \/ ({M,N} \ {A}))))
    by XBOOLE_1:42
 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ ({M,N} \ {A}))))
    by A8,A9,ZFMISC_1:72
 .= {B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ ({M,N} \ {A})))) by A5,ZFMISC_1:67
 .= {B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ {M,N}))) by A10,A11,ZFMISC_1:72
 .= {B} \/ ({C} \/ ({D,E} \/ {F,J,M,N})) by ENUMSET1:45
 .= {B} \/ ({C} \/ {D,E,F,J,M,N}) by ENUMSET1:52
 .= {B} \/ {C,D,E,F,J,M,N} by ENUMSET1:56
 .= {B,C,D,E,F,J,M,N} by ENUMSET1:62;
  then A13:G \ {A} = {} \/ {B,C,D,E,F,J,M,N} by A3,XBOOLE_1:37;
  A14:B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N c= '/\' (G \ {A})
  proof
    let x be set;
    assume A15:x in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) \ {
{}}
      by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) &
    not x in {{}}
      by XBOOLE_0:def 4;
    then consider bcdefjm,n being set such that
A16:  bcdefjm in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M &
      n in N & x = bcdefjm /\ n by SETFAM_1:def 5;
      bcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}}
      by A16,PARTIT1:def 4;
    then bcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) &
    not bcdefjm in {{}} by XBOOLE_0:def 4;
    then consider bcdefj,m being set such that
A17:  bcdefj in B '/\' C '/\' D '/\' E '/\' F '/\' J & m in M &
      bcdefjm = bcdefj /\ m
        by SETFAM_1:def 5;
      bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by A17,PARTIT1:def 4;
    then bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) &
    not bcdefj in {{}}
      by XBOOLE_0:def 4;
    then consider bcdef,j being set such that
A18:  bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & bcdefj = bcdef /\ j
      by SETFAM_1:def 5;
      bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A18,PARTIT1:def 4;
    then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}}
      by XBOOLE_0:def 4;
    then consider bcde,f being set such that
A19:  bcde in B '/\' C '/\' D '/\' E & f in F & bcdef = bcde /\ f
      by SETFAM_1:def 5;
      bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A19,PARTIT1:def 4;
    then bcde in INTERSECTION(B '/\' C '/\' D,E) & not bcde in {{}}
    by XBOOLE_0:def 4;
    then consider bcd,e being set such that
A20:  bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5;
      bcd in INTERSECTION(B '/\' C,D) \ {{}} by A20,PARTIT1:def 4;
    then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4;
    then consider bc,d being set such that
A21:  bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5;
      bc in INTERSECTION(B,C) \ {{}} by A21,PARTIT1:def 4;
    then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4;
    then consider b,c being set such that
A22:  b in B & c in C & bc = b /\ c by SETFAM_1:def 5;
    set h = (B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +*
            (F .--> f) +* (J .--> j) +* (M .--> m) +* (N .--> n);
A23:    dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f)
        +* (J .--> j) +* (M .--> m) +* (N .--> n))
      = {N,B,C,D,E,F,J,M} by Th22
     .= {N} \/ {B,C,D,E,F,J,M} by ENUMSET1:62
     .= {B,C,D,E,F,J,M,N} by ENUMSET1:68;
A24:  h.D = d by A1,Th21;
A25:  h.B = b by A1,Th21;
A26:  h.C = c by A1,Th21;
A27:  h.E = e by A1,Th21;
A28:  h.F = f by A1,Th21;
A29:  h.J = j by A1,Th21;
A30:  h.M = m by A1,BVFUNC14:15;
A31:  h.N = n by YELLOW14:3;
A32:  for p being set st p in (G \ {A}) holds h.p in p
      proof
        let p be set;
        assume p in (G \ {A});
         then p=B or p=C or p=D or p=E or p=F or p=J or p=M or p=N
                    by A13,ENUMSET1:38;
        hence thesis by A1,A16,A17,A18,A19,A20,A21,A22,Th21,BVFUNC14:15,
YELLOW14:3;
      end;
A33:    D in dom h by A23,ENUMSET1:39;
then A34:  h.D in rng h by FUNCT_1:def 5;
A35:   B in dom h by A23,ENUMSET1:39;
A36:   C in dom h by A23,ENUMSET1:39;
A37:   E in dom h by A23,ENUMSET1:39;
A38:   F in dom h by A23,ENUMSET1:39;
A39:   J in dom h by A23,ENUMSET1:39;
A40:   M in dom h by A23,ENUMSET1:39;
A41:   N in dom h by A23,ENUMSET1:39;
      A42:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A43:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
          now per cases by A23,A43,ENUMSET1:38;
        case x1=D; hence thesis by A43,ENUMSET1:39;
        case x1=B; hence thesis by A43,ENUMSET1:39;
        case x1=C; hence thesis by A43,ENUMSET1:39;
        case x1=E; hence thesis by A43,ENUMSET1:39;
        case x1=F; hence thesis by A43,ENUMSET1:39;
        case x1=J; hence thesis by A43,ENUMSET1:39;
        case x1=M; hence thesis by A43,ENUMSET1:39;
        case x1=N; hence thesis by A43,ENUMSET1:39;
        end;
        hence thesis;
      end;
        {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} c= rng h
      proof
        let t be set;
        assume A44:t in {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N};
          now per cases by A44,ENUMSET1:38;
        case t=h.D; hence thesis by A33,FUNCT_1:def 5;
        case t=h.B; hence thesis by A35,FUNCT_1:def 5;
        case t=h.C; hence thesis by A36,FUNCT_1:def 5;
        case t=h.E; hence thesis by A37,FUNCT_1:def 5;
        case t=h.F; hence thesis by A38,FUNCT_1:def 5;
        case t=h.J; hence thesis by A39,FUNCT_1:def 5;
        case t=h.M; hence thesis by A40,FUNCT_1:def 5;
        case t=h.N; hence thesis by A41,FUNCT_1:def 5;
        end;
        hence thesis;
      end;
      then A45:rng h = {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by A42,XBOOLE_0:def 10
;
        rng h c= bool Y
      proof
        let t be set;
        assume A46:t in rng h;
          now per cases by A42,A46,ENUMSET1:38;
        case t=h.D; hence thesis by A21,A24;
        case t=h.B; hence thesis by A22,A25;
        case t=h.C; hence thesis by A22,A26;
        case t=h.E; hence thesis by A20,A27;
        case t=h.F; hence thesis by A19,A28;
        case t=h.J; hence thesis by A18,A29;
        case t=h.M; hence thesis by A17,A30;
        case t=h.N; hence thesis by A16,A31;
        end;
        hence thesis;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
      reconsider h as Function;
A47:  Intersect FF = meet (rng h) by A34,CANTOR_1:def 3;
    A48:x c= Intersect FF
    proof
      let u be set;
      assume A49:u in x;
      A50:FF<>{} by A45,ENUMSET1:39;
        for y be set holds y in FF implies u in y
      proof
        let y be set;
        assume A51: y in FF;
          now per cases by A42,A51,ENUMSET1:38;
        case A52: y=h.D;
          u in (d /\ ((b /\ c) /\ e)) /\ f /\ j /\ m /\
 n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16;
        then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j /\ m /\ n by XBOOLE_1:16;
        then u in d /\ (((b /\ c) /\ e /\ f) /\ j) /\ m /\ n by XBOOLE_1:16;
        then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m) /\ n by XBOOLE_1:16;
        then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m /\ n) by XBOOLE_1:16;
        hence thesis by A24,A52,XBOOLE_0:def 3;
        case A53: y=h.B;
          u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m /\ n by A16,A17,A18,A19,A20,
A21,A22,A49,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m /\ n by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) /\ m /\ n by XBOOLE_1:16;
        then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) /\ m /\ n by XBOOLE_1:16;
        then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) /\ m /\ n by XBOOLE_1:16;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b /\ m /\ n by XBOOLE_1:16;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ b) /\ n by XBOOLE_1:16
;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ b /\ n) by XBOOLE_1:16
;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ (b /\ n)) by XBOOLE_1:
16
;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ (n /\ b) by XBOOLE_1:16
;
        then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ n /\ b by XBOOLE_1:16;
        hence thesis by A25,A53,XBOOLE_0:def 3;
        case A54: y=h.C;
          u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m /\ n by A16,A17,A18,A19,A20,
A21,A22,A49,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m /\ n by XBOOLE_1:16;
        then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m /\ n by XBOOLE_1:16;
        then u in c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m) /\ n by XBOOLE_1:16
;
        then u in c /\ ((((((d /\ e) /\ b) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1:
16;
        hence thesis by A26,A54,XBOOLE_0:def 3;
        case A55: y=h.E;
          u in ((b /\ c) /\ d) /\ (f /\ e) /\ j /\ m /\
 n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) /\ m /\ n by XBOOLE_1:16;
        then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) /\ m /\ n by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e /\ m /\ n by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ (e /\ m) /\ n by XBOOLE_1:16
;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ ((m /\ e) /\ n) by XBOOLE_1:
16
;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ (m /\ (n /\ e)) by XBOOLE_1:
16
;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ (n /\ e) by XBOOLE_1:16
;
        then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ n /\ e by XBOOLE_1:16;
        hence thesis by A27,A55,XBOOLE_0:def 3;
        case A56: y=h.F;
          u in (((b /\ c) /\ d) /\ e) /\ j /\ f /\ m /\
 n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ f /\ n by XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ n /\ f by XBOOLE_1:16;
        hence thesis by A28,A56,XBOOLE_0:def 3;
        case A57: y=h.J;
          u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ j /\
 n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16;
        then u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ n /\ j by XBOOLE_1:16;
        hence thesis by A29,A57,XBOOLE_0:def 3;
        case A58: y=h.M;
          u in (((b /\ c) /\ d) /\ e) /\ f /\ j /\ n /\ m by A16,A17,A18,A19,
A20,A21,A22,A49,XBOOLE_1:16;
        hence thesis by A30,A58,XBOOLE_0:def 3;
        case y=h.N;
        hence thesis by A16,A31,A49,XBOOLE_0:def 3;
        end;
        hence thesis;
      end;
      then u in meet FF by A50,SETFAM_1:def 1;
      hence thesis by A50,CANTOR_1:def 3;
    end;
      Intersect FF c= x
    proof
      let t be set;
      assume A59: t in Intersect FF;
        h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h &
      h.F in rng h &
      h.J in rng h & h.M in rng h & h.N in rng h by A45,ENUMSET1:39;
      then A60:t in b & t in c & t in d & t in e & t in f & t in j & t in m & t
in n
        by A24,A25,A26,A27,A28,A29,A30,A31,A47,A59,SETFAM_1:def 1;
      then t in b /\ c by XBOOLE_0:def 3;
      then t in (b /\ c) /\ d by A60,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e by A60,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f by A60,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f /\ j by A60,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e /\ f /\ j /\ m by A60,XBOOLE_0:def 3;
      hence thesis by A16,A17,A18,A19,A20,A21,A22,A60,XBOOLE_0:def 3;
    end;
    then A61:x = Intersect FF by A48,XBOOLE_0:def 10;
      x<>{} by A15,EQREL_1:def 6;
    hence thesis by A13,A23,A32,A61,BVFUNC_2:def 1;
  end;

    '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
  proof
    let x be set;
    assume x in '/\' (G \ {A});
    then consider h being Function, FF being Subset-Family of Y such that
A62:  dom h=(G \ {A}) & rng h = FF &
      (for d being set st d in (G \ {A}) holds h.d in d) &
      x=Intersect FF & x<>{} by BVFUNC_2:def 1;
    A63:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) &
        F in (G \ {A}) & J in (G \ {A}) & M in (G \ {A}) & N in (G \ {A})
      by A13,ENUMSET1:39;
    then A64:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F &
    h.J in J & h.M in M & h.N in N by A62;
    A65:h.B in rng h & h.C in rng h & h.D in rng h &
    h.E in rng h & h.F in rng h &
        h.J in rng h & h.M in rng h & h.N in rng h
      by A62,A63,FUNCT_1:def 5;
    then A66:Intersect FF = meet (rng h) by A62,CANTOR_1:def 3;
    A67:not (x in {{}}) by A62,TARSKI:def 1;
    A68:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N c= x
    proof
      let p be set;
      assume A69: p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\
 h.N;
      then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M & p in h
.
N
        by XBOOLE_0:def 3;
      then A70: p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J & p in h.M
        by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F & p in h.J by XBOOLE_0:def 3
;
      then A71:p in h.B /\ h.C /\ h.D /\ h.E & p in h.F by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D & p in h.E & p in h.F by XBOOLE_0:def 3;
      then p in h.B /\ h.C & p in h.D by XBOOLE_0:def 3;
      then A72:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F &
      p in h.J & p in h.M & p in h.N
        by A69,A70,A71,XBOOLE_0:def 3;
      A73:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}
      proof
        let u be set;
        assume u in rng h;
        then consider x1 being set such that
A74:      x1 in dom h & u = h.x1 by FUNCT_1:def 5;
          x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M or x1=N
          by A13,A62,A74,ENUMSET1:38;
        hence thesis by A74,ENUMSET1:39;
      end;
        for y being set holds y in rng h implies p in y
      proof
        let y be set;
        assume y in rng h;
        hence thesis by A72,A73,ENUMSET1:38;
      end;
      hence thesis by A62,A65,A66,SETFAM_1:def 1;
    end;
    A75: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N
    proof
      let p be set;
      assume p in x;
      then A76:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F &
      p in h.J & p in h.M & p in h.N
       by A62,A65,A66,SETFAM_1:def 1;
      then p in h.B /\ h.C by XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D by A76,XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E by A76,XBOOLE_0:def 3;
      then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A76,XBOOLE_0:def 3;
      then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\
 h.J by A76,XBOOLE_0:def 3;
      then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\
 h.M by A76,XBOOLE_0:def 3;
      hence thesis by A76,XBOOLE_0:def 3;
    end;
    then A77:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N = x
      by A68,XBOOLE_0:def 10;
    set mbc=h.B /\ h.C;
    set mbcd=(h.B /\ h.C) /\ h.D;
    set mbcde=(h.B /\ h.C) /\ h.D /\ h.E;
    set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F;
    set mbcdefj=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J;
    set mbcdefjm=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J /\ h.M;
     mbcdefjm<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A78:not (mbcdefjm in {{}}) by TARSKI:def 1;
     mbcdefj<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A79:not (mbcdefj in {{}}) by TARSKI:def 1;
     mbcdef<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A80:not (mbcdef in {{}}) by TARSKI:def 1;
     mbcde<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A81:not (mbcde in {{}}) by TARSKI:def 1;
     mbcd<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A82:not (mbcd in {{}}) by TARSKI:def 1;
      mbc<>{} by A62,A68,A75,XBOOLE_0:def 10;
    then A83:not (mbc in {{}}) by TARSKI:def 1;
      mbc in INTERSECTION(B,C) by A64,SETFAM_1:def 5;
    then mbc in INTERSECTION(B,C) \ {{}} by A83,XBOOLE_0:def 4;
    then mbc in B '/\' C by PARTIT1:def 4;
    then mbcd in INTERSECTION(B '/\' C,D) by A64,SETFAM_1:def 5;
    then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A82,XBOOLE_0:def 4;
    then mbcd in B '/\' C '/\' D by PARTIT1:def 4;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A64,SETFAM_1:def 5;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A81,XBOOLE_0:def 4
;
    then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A64,SETFAM_1:def 5
;
    then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
      by A80,XBOOLE_0:def 4;
    then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4;
    then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J)
      by A64,SETFAM_1:def 5;
    then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}}
      by A79,XBOOLE_0:def 4;
    then mbcdefj in (B '/\' C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4;
    then mbcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M)
      by A64,SETFAM_1:def 5;
    then mbcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {
{}}
      by A78,XBOOLE_0:def 4;
    then mbcdefjm in (B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M)
     by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N)
      by A64,A77,SETFAM_1:def 5;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) \ {
{}}
      by A67,XBOOLE_0:def 4;
    hence thesis by PARTIT1:def 4;
  end;
  hence thesis by A2,A14,XBOOLE_0:def 10;
end;

theorem Th36:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B} \/ {C,D,E,F,J,M,N} by Th28
   .={B,A,C,D,E,F,J,M,N} by Th28;
  hence thesis by Th35;
end;

theorem Th37:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C} \/ {D,E,F,J,M,N} by Th29
   .={A} \/ {B,C} \/ {D,E,F,J,M,N} by ENUMSET1:42
   .={A,C,B} \/ {D,E,F,J,M,N} by ENUMSET1:42
   .={A,C,B,D,E,F,J,M,N} by Th29;
  hence thesis by Th36;
end;

theorem Th38:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B} \/ {C,D,E,F,J,M,N} by Th28
   .={A,B} \/ ({C,D} \/ {E,F,J,M,N}) by ENUMSET1:57
   .={A,B} \/ {D,C,E,F,J,M,N} by ENUMSET1:57
   .={A,B,D,C,E,F,J,M,N} by Th28;
  hence thesis by Th37;
end;

theorem Th39:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C} \/ {D,E,F,J,M,N} by Th29
   .={A,B,C} \/ ({D,E} \/ {F,J,M,N}) by ENUMSET1:52
   .={A,B,C} \/ ({E,D,F,J,M,N}) by ENUMSET1:52
   .={A,B,C,E,D,F,J,M,N} by Th29;
  hence thesis by Th38;
end;

theorem Th40:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C,D} \/ {E,F,J,M,N} by Lm3
   .={A,B,C,D} \/ ({E,F} \/ {J,M,N}) by ENUMSET1:48
   .={A,B,C,D} \/ ({F,E,J,M,N}) by ENUMSET1:48
   .={A,B,C,D,F,E,J,M,N} by Lm3;
  hence thesis by Th39;
end;

theorem Th41:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E} \/ {F,J,M,N} by Th31
   .={A,B,C,D,E} \/ ({J,F} \/ {M,N}) by ENUMSET1:45
   .={A,B,C,D,E} \/ ({J,F,M,N}) by ENUMSET1:45
   .={A,B,C,D,E,J,F,M,N} by Th31;
  hence thesis by Th40;
end;

theorem Th42:
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' N
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E,F} \/ {J,M,N} by Th32
    .={A,B,C,D,E,F} \/ ({J,M} \/ {N}) by ENUMSET1:43
    .={A,B,C,D,E,F} \/ {M,J,N} by ENUMSET1:43
    .={A,B,C,D,E,F,M,J,N} by Th32;
  hence thesis by Th41;
end;

theorem
  for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
st G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds
CompF(N,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
    {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E,F,J} \/ {M,N} by Th33
   .={A,B,C,D,E,F,J,N,M} by Th33;
  hence thesis by Th42;
end;

theorem Th44:
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
      h.D = D' & h.E = E' & h.F = F' &
      h.J = J' & h.M = M' & h.N = N'
proof
  let A,B,C,D,E,F,J,M,N be set;
  let h be Function;
  let A',B',C',D',E',F',J',M',N' be set;
  assume A1:
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
  C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
  E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A');
A2:  dom (A .--> A') = {A} by CQC_LANG:5;
A3:  h.A = A'
      proof
          A in dom (A .--> A') by A2,TARSKI:def 1;
        then h.A = (A .--> A').A by A1,FUNCT_4:14;
        hence thesis by CQC_LANG:6;
      end;
A4:  h.B = B'
      proof
          not B in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).B
                by A1,FUNCT_4:12
          .= B' by A1,Th21;
        hence thesis;
      end;
A5:  h.C = C'
      proof
          not C in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).C
         by A1,FUNCT_4:12;
        hence thesis by A1,Th21;
      end;
A6:  h.D = D'
      proof
          not D in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).D
                by A1,FUNCT_4:12
          .= D' by A1,Th21;
        hence thesis;
      end;
A7:  h.E = E'
      proof
          not E in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).E
                    by A1,FUNCT_4:12
              .= E' by A1,Th21;
        hence thesis;
      end;
A8:  h.F = F'
      proof
          not F in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).F
                by A1,FUNCT_4:12
          .= F' by A1,Th21;
        hence thesis;
      end;
A9:  h.J = J'
      proof
          not J in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.J=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).J
                by A1,FUNCT_4:12
          .= J' by A1,Th21;
        hence thesis;
      end;
A10:  h.M = M'
      proof
          not M in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.M=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).M
                by A1,FUNCT_4:12
          .= M' by A1,BVFUNC14:15;
        hence thesis;
      end;
        h.N = N'
      proof
          not N in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.N=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
             (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).N
                by A1,FUNCT_4:12
          .= N' by YELLOW14:3;
        hence thesis;
      end;
  hence thesis by A3,A4,A5,A6,A7,A8,A9,A10;
end;

theorem Th45:
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A')
holds dom h = {A,B,C,D,E,F,J,M,N}
proof
  let A,B,C,D,E,F,J,M,N be set;
  let h be Function;
  let A',B',C',D',E',F',J',M',N' be set;
  assume A1:
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A');
A2:  dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
           (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N'))
       = {N,B,C,D,E,F,J,M} by Th22
      .= {N} \/ {B,C,D,E,F,J,M} by ENUMSET1:62
      .= {B,C,D,E,F,J,M,N} by ENUMSET1:68;
    dom (A .--> A') = {A} by CQC_LANG:5;
  then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
       (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +*(A .--> A'))
       = {B,C,D,E,F,J,M,N} \/ {A} by A2,FUNCT_4:def 1
      .= {A,B,C,D,E,F,J,M,N} by Th27;
  hence thesis by A1;
end;

theorem Th46:
for A,B,C,D,E,F,J,M,N being set, h being Function,
A',B',C',D',E',F',J',M',N' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}
proof
  let A,B,C,D,E,F,J,M,N be set;
  let h be Function;
  let A',B',C',D',E',F',J',M',N' be set;
  assume
 h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (J .--> J') +*
    (M .--> M') +* (N .--> N') +* (A .--> A');
then A1:  dom h = {A,B,C,D,E,F,J,M,N} by Th45;
      then A2: A in dom h by Lm2;
      A3: B in dom h by A1,Lm2;
      A4: C in dom h by A1,Lm2;
      A5: D in dom h by A1,Lm2;
      A6: E in dom h by A1,Lm2;
      A7: F in dom h by A1,Lm2;
      A8: J in dom h by A1,Lm2;
      A9: M in dom h by A1,Lm2;
      A10: N in dom h by A1,Lm2;
      A11:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A12:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
          now per cases by A1,A12,Lm2;
        case x1=A; hence thesis by A12,Lm2;
        case x1=B; hence thesis by A12,Lm2;
        case x1=C; hence thesis by A12,Lm2;
        case x1=D; hence thesis by A12,Lm2;
        case x1=E; hence thesis by A12,Lm2;
        case x1=F; hence thesis by A12,Lm2;
        case x1=J; hence thesis by A12,Lm2;
        case x1=M; hence thesis by A12,Lm2;
        case x1=N; hence thesis by A12,Lm2;
        end;
        hence thesis;
      end;
        {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} c= rng h
      proof
        let t be set;
        assume A13:t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N};
          now per cases by A13,Lm2;
        case t=h.A; hence thesis by A2,FUNCT_1:def 5;
        case t=h.B; hence thesis by A3,FUNCT_1:def 5;
        case t=h.C; hence thesis by A4,FUNCT_1:def 5;
        case t=h.D; hence thesis by A5,FUNCT_1:def 5;
        case t=h.E; hence thesis by A6,FUNCT_1:def 5;
        case t=h.F; hence thesis by A7,FUNCT_1:def 5;
        case t=h.J; hence thesis by A8,FUNCT_1:def 5;
        case t=h.M; hence thesis by A9,FUNCT_1:def 5;
        case t=h.N; hence thesis by A10,FUNCT_1:def 5;
        end;
        hence thesis;
      end;
  hence thesis by A11,XBOOLE_0:def 10;
end;

theorem
  for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y
, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) /\
      EqClass(z,A) <> {}
proof
  let a be Element of Funcs(Y,BOOLEAN);
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
  let z,u be Element of Y;
  let h be Function;
  assume that
A1:G is independent and
A2: G={A,B,C,D,E,F,J,M,N} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
  C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
  E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N;
      set GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N);
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (M .--> EqClass(u,M)) +* (N .--> EqClass(u,N)) +*
              (A .--> EqClass(z,A));
A3:  dom h = G by A2,Th45;
A4:  h.A = EqClass(z,A) by A2,Th44;
A5:  h.B = EqClass(u,B) by A2,Th44;
A6:  h.C = EqClass(u,C) by A2,Th44;
A7:  h.D = EqClass(u,D) by A2,Th44;
A8:  h.E = EqClass(u,E) by A2,Th44;
A9:  h.F = EqClass(u,F) by A2,Th44;
A10:  h.J = EqClass(u,J) by A2,Th44;
A11:  h.M = EqClass(u,M) by A2,Th44;
A12:  h.N = EqClass(u,N) by A2,Th44;

A13:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M or d=N
          by A2,Lm2;
        hence thesis by A4,A5,A6,A7,A8,A9,A10,A11,A12;
      end;

        A in dom h by A2,A3,Lm2;
then A14:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A3,Lm2;
then A15:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A3,Lm2;
then A16:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A3,Lm2;
then A17:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A3,Lm2;
then A18:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A3,Lm2;
then A19:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A3,Lm2;
then A20:  h.J in rng h by FUNCT_1:def 5;
        M in dom h by A2,A3,Lm2;
then A21:  h.M in rng h by FUNCT_1:def 5;
        N in dom h by A2,A3,Lm2;
then A22:  h.N in rng h by FUNCT_1:def 5;

      A23:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by Th46;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or
            t=h.J or t=h.M or t=h.N
          by A23,Lm2;
        hence thesis by A4,A5,A6,A7,A8,A9,A10,A11,A12;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A24:  Intersect FF = meet (rng h) by A14,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A3,A13,BVFUNC_2:def 5;
      then consider m being set such that
A25:    m in Intersect FF by XBOOLE_0:def 1;
A26:  m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) &
      m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) &
    m in EqClass(u,M)
    & m in EqClass(u,N)
     by A4,A5,A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A17,A18,A19,A20,A21,A22,A24,
A25,SETFAM_1:def 1;

        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\
           EqClass(u,N) by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\
           EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\
           EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J) /\
           EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = (EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E)) /\ EqClass(u,F)
/\
           EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = ((((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\
           EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
then A27:  GG /\ EqClass(z,A) = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,
D))
               /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\
 EqClass(u,M) /\
               EqClass(u,N)) /\ EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A26,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A26,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A26,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F)
        by A26,XBOOLE_0:def 3;
      then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,
E)
        /\ EqClass(u,F) /\ EqClass(u,J)
        by A26,XBOOLE_0:def 3;
      then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,
E)
        /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M)
        by A26,XBOOLE_0:def 3;
      then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,
E)
        /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N)
        by A26,XBOOLE_0:def 3;
  hence thesis by A26,A27,XBOOLE_0:def 3;
end;

theorem
  for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y),
A,B,C,D,E,F,J,M,N being a_partition of Y, z,u being Element of Y
st G is independent & G={A,B,C,D,E,F,J,M,N} &
A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)=
EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G))
proof
  let a be Element of Funcs(Y,BOOLEAN);
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F,J,M,N be a_partition of Y;
  let z,u be Element of Y;
  assume that
A1:G is independent and
A2: G={A,B,C,D,E,F,J,M,N} &
  A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N &
  B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N &
  C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N &
  E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N &
  EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)=
  EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N);
      A3:CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
        by A2,Th35;
      A4:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
        by A2,Th36;
      reconsider HH=EqClass(z,CompF(B,G)) as set;
      reconsider I=EqClass(z,A) as set;
  set GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J '/\' M '/\' N));
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +*
              (M .--> EqClass(u,M)) +* (N .--> EqClass(u,N)) +*
              (A .--> EqClass(z,A));
A5:  dom h = G by A2,Th45;
A6:  h.A = EqClass(z,A) by A2,Th44;
A7:  h.B = EqClass(u,B) by A2,Th44;
A8:  h.C = EqClass(u,C) by A2,Th44;
A9:  h.D = EqClass(u,D) by A2,Th44;
A10:  h.E = EqClass(u,E) by A2,Th44;
A11:  h.F = EqClass(u,F) by A2,Th44;
A12:  h.J = EqClass(u,J) by A2,Th44;
A13:  h.M = EqClass(u,M) by A2,Th44;
A14:  h.N = EqClass(u,N) by A2,Th44;

A15:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume d in G;
        then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M or d=N
          by A2,Lm2;
        hence thesis by A6,A7,A8,A9,A10,A11,A12,A13,A14;
      end;

        A in dom h by A2,A5,Lm2;
then A16:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A2,A5,Lm2;
then A17:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A2,A5,Lm2;
then A18:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A2,A5,Lm2;
then A19:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A2,A5,Lm2;
then A20:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A2,A5,Lm2;
then A21:  h.F in rng h by FUNCT_1:def 5;
        J in dom h by A2,A5,Lm2;
then A22:  h.J in rng h by FUNCT_1:def 5;
        M in dom h by A2,A5,Lm2;
then A23:  h.M in rng h by FUNCT_1:def 5;
        N in dom h by A2,A5,Lm2;
then A24:  h.N in rng h by FUNCT_1:def 5;

      A25:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by Th46;
        rng h c= bool Y
      proof
        let t be set;
        assume t in rng h;
        then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J
         or t=h.M or t=h.N
          by A25,Lm2;
        hence thesis by A6,A7,A8,A9,A10,A11,A12,A13,A14;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A26:  Intersect FF = meet (rng h) by A16,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A5,A15,BVFUNC_2:def 5;
      then consider m being set such that
A27:    m in Intersect FF by XBOOLE_0:def 1;
A28:  m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) &
      m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) &
    m in EqClass(u,M)
    & m in EqClass(u,N)
  by A6,A7,A8,A9,A10,A11,A12,A13,A14,A16,A17,A18,A19,A20,A21,A22,A23,A24,A26,
A27,SETFAM_1:def 1
;
        GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\
           EqClass(u,N)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M
)
         /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\
           EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u
,J) /\
           EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = (((EqClass(u,B '/\' C '/\' D)) /\ EqClass(u,E)) /\ EqClass(u,F
)) /\
           EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
      then GG = ((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\
           EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N)
        by BVFUNC14:1;
then A29:  GG /\ I = ((((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
               EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M)
             /\ EqClass(u,N)) /\ EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A28,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A28,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A28,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) by A28,XBOOLE_0:def 3;
      then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u
,E))
/\
          EqClass(u,F) /\ EqClass(u,J) by A28,XBOOLE_0:def 3;
      then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
          EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M)
        by A28,XBOOLE_0:def 3;
      then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
          EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M)
        /\ EqClass(u,N) by A28,XBOOLE_0:def 3;
      then A30:GG /\ I <> {} by A28,A29,XBOOLE_0:def 3;
      then consider p being set such that
A31:   p in GG /\ I by XBOOLE_0:def 1;
        GG /\ I in
        INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) &
      not (GG /\ I in {{}}) by A30,SETFAM_1:def 5,TARSKI:def 1;
      then GG /\ I in
        INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)
                \ {{}} by XBOOLE_0:def 4;
      then GG /\ I in
      (A '/\' (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))
        by PARTIT1:def 4;
      then reconsider p as Element of Y by A31;
      set K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N);
      A32:p in K & K in C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N
       by T_1TOPSP:def 1;
        p in GG & p in I by A31,XBOOLE_0:def 3;
      then A33:p in I /\ K by A32,XBOOLE_0:def 3;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\'
N) &
      not (I /\ K in {{}})
        by SETFAM_1:def 5,TARSKI:def 1;
      then A34: I /\ K in INTERSECTION(A,C '/\' D '/\'
      E '/\' F '/\' J '/\' M '/\' N) \ {{}}
        by XBOOLE_0:def 4;
      set L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N);
        GG=EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J '/\' M '/\' N
)
        by PARTIT1:16;
      then GG=EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J '/\' M
'/\' N)
        by PARTIT1:16;
      then GG=EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J '/\' M
'/\' N)
        by PARTIT1:16;
      then GG=EqClass(u,B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
'/\' N)
        by PARTIT1:16;
      then GG=
       EqClass(u,B '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)
        by PARTIT1:16;
      then GG=EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N))
        by PARTIT1:16;
then A35: GG c= L by A2,BVFUNC11:3;
A36: p in GG by A31,XBOOLE_0:def 3;
        p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)
       by T_1TOPSP:def 1;
      then K meets L by A35,A36,XBOOLE_0:3;
      then K=L by T_1TOPSP:9;
      then A37:z in K by T_1TOPSP:def 1;
        z in I by T_1TOPSP:def 1;
      then A38:z in I /\ K by A37,XBOOLE_0:def 3;
        z in HH by T_1TOPSP:def 1;
      then A39:I /\ K meets HH by A38,XBOOLE_0:3;
        A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)
    = A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M) '/\' N by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E '/\' F '/\' J) '/\' M '/\' N by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E '/\' F) '/\' J '/\' M '/\' N by PARTIT1:16
   .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J '/\' M '/\' N by PARTIT1:16
   .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J '/\' M '/\' N by PARTIT1:16
   .= A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N by PARTIT1:16;
      then I /\ K in CompF(B,G) by A4,A34,PARTIT1:def 4;
      then p in HH by A33,A39,EQREL_1:def 6;
  hence thesis by A3,A36,XBOOLE_0:3;
end;

theorem
    x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9
    implies x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } by Lm2;


Back to top