Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1, CAT_1, FUNCT_4, RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP, TARSKI; notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1, BVFUNC_2; constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1; clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, XBOOLE_0; requirements SUBSET, BOOLE; definitions TARSKI; theorems EQREL_1, ZFMISC_1, T_1TOPSP, PARTIT1, BVFUNC_2, BVFUNC11, BVFUNC14, FUNCT_4, CQC_LANG, TARSKI, ENUMSET1, FUNCT_1, CANTOR_1, SETFAM_1, BVFUNC23, YELLOW14, XBOOLE_0, XBOOLE_1; schemes ENUMSET1, XBOOLE_0; begin :: Chap. 1 Preliminaries reserve Y for non empty set, G for Subset of PARTITIONS(Y), A, B, C, D, E, F, J, M for a_partition of Y, x,x1,x2,x3,x4,x5,x6,x7,x8,x9,y,X for set; theorem Th1: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J proof assume A1: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J; A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7; A3: G \ {A}={A} \/ {B,C,D,E,F,J} \ {A} by A1,ENUMSET1:56; A4:not B in {A} by A1,TARSKI:def 1; A5:not C in {A} by A1,TARSKI:def 1; A6:not D in {A} by A1,TARSKI:def 1; A7:not E in {A} by A1,TARSKI:def 1; A8:not F in {A} by A1,TARSKI:def 1; A9:not J in {A} by A1,TARSKI:def 1; A10:{D,E} \ {A} = {D,E} by A6,A7,ZFMISC_1:72; {B,C,D,E,F,J} \ {A} = ({B} \/ {C,D,E,F,J}) \ {A} by ENUMSET1:51 .= ({B} \ {A}) \/ ({C,D,E,F,J} \ {A}) by XBOOLE_1:42 .= {B} \/ ({C,D,E,F,J} \ {A}) by A4,ZFMISC_1:67 .= {B} \/ (({C} \/ {D,E,F,J}) \ {A}) by ENUMSET1:47 .= {B} \/ (({C} \ {A}) \/ ({D,E,F,J} \ {A})) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J}) \ {A})) by ENUMSET1:45 .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J} \ {A}))) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ {F,J})) by A8,A9,A10,ZFMISC_1:72 .= {B} \/ ({C} \/ ({D,E} \/ {F,J})) by A5,ZFMISC_1:67 .= {B} \/ ({C} \/ {D,E,F,J}) by ENUMSET1:45 .= {B} \/ {C,D,E,F,J} by ENUMSET1:47 .= {B,C,D,E,F,J} by ENUMSET1:51; then A11:G \ {A} = {A} \ {A} \/ {B,C,D,E,F,J} by A3,XBOOLE_1:42 .= {} \/ {B,C,D,E,F,J} by XBOOLE_1:37; A12:B '/\' C '/\' D '/\' E '/\' F '/\' J c= '/\' (G \ {A}) proof let x be set; assume A13:x in B '/\' C '/\' D '/\' E '/\' F '/\' J; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) & not x in {{}} by XBOOLE_0:def 4; then consider bcdef,j being set such that A14: bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & x = bcdef /\ j by SETFAM_1:def 5; bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A14,PARTIT1:def 4; then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}} by XBOOLE_0:def 4; then consider bcde,f being set such that A15: bcde in B '/\' C '/\' D '/\' E & f in F & bcdef = bcde /\ f by SETFAM_1:def 5; bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A15,PARTIT1:def 4; then bcde in INTERSECTION(B '/\' C '/\' D,E) & not bcde in {{}} by XBOOLE_0:def 4; then consider bcd,e being set such that A16: bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5; bcd in INTERSECTION(B '/\' C,D) \ {{}} by A16,PARTIT1:def 4; then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4; then consider bc,d being set such that A17: bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5; bc in INTERSECTION(B,C) \ {{}} by A17,PARTIT1:def 4; then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4; then consider b,c being set such that A18: b in B & c in C & bc = b /\ c by SETFAM_1:def 5; set h = (B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j); A19: dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j)) = {J,B,C,D,E,F} by BVFUNC23:8 .= {J} \/ {B,C,D,E,F} by ENUMSET1:51 .= {B,C,D,E,F,J} by ENUMSET1:55; A20: dom h = {J,B,C,D,E,F} by BVFUNC23:8 .= {J} \/ {B,C,D,E,F} by ENUMSET1:51 .= {B,C,D,E,F,J} by ENUMSET1:55; A21: h.D = d by A1,BVFUNC23:7; A22: h.B = b by A1,BVFUNC23:7; A23: h.C = c by A1,BVFUNC23:7; A24: h.E = e by A1,BVFUNC23:7; A25: h.F = f by A1,BVFUNC23:7; A26: h.J = j by A1,BVFUNC23:7; A27: for p being set st p in (G \ {A}) holds h.p in p proof let p be set; assume p in (G \ {A}); then p=B or p=C or p=D or p=E or p=F or p=J by A11,ENUMSET1:28; hence thesis by A1,A14,A15,A16,A17,A18,BVFUNC23:7; end; D in dom h by A20,ENUMSET1:29; then A28: h.D in rng h by FUNCT_1:def 5; B in dom h by A20,ENUMSET1:29; then A29: h.B in rng h by FUNCT_1:def 5; C in dom h by A20,ENUMSET1:29; then A30: h.C in rng h by FUNCT_1:def 5; E in dom h by A20,ENUMSET1:29; then A31: h.E in rng h by FUNCT_1:def 5; F in dom h by A20,ENUMSET1:29; then A32: h.F in rng h by FUNCT_1:def 5; J in dom h by A20,ENUMSET1:29; then A33: h.J in rng h by FUNCT_1:def 5; A34:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J} proof let t be set; assume t in rng h; then consider x1 being set such that A35: x1 in dom h & t = h.x1 by FUNCT_1:def 5; x1=B or x1=C or x1=D or x1=E or x1=F or x1=J by A20,A35,ENUMSET1:28; hence thesis by A35,ENUMSET1:29; end; {h.B,h.C,h.D,h.E,h.F,h.J} c= rng h proof let t be set; assume t in {h.B,h.C,h.D,h.E,h.F,h.J}; hence thesis by A28,A29,A30,A31,A32,A33,ENUMSET1:28; end; then A36:rng h = {h.B,h.C,h.D,h.E,h.F,h.J} by A34,XBOOLE_0:def 10; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J by A34,ENUMSET1:28; hence thesis by A14,A15,A16,A17,A18,A21,A22,A23,A24,A25,A26; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; reconsider h as Function; A37: Intersect FF = meet (rng h) by A28,CANTOR_1:def 3; A38:x c= Intersect FF proof let u be set; assume A39:u in x; A40:FF<>{} by A36,ENUMSET1:29; for y be set holds y in FF implies u in y proof let y be set; assume A41: y in FF; now per cases by A34,A41,ENUMSET1:28; case A42: y=h.D; u in (d /\ ((b /\ c) /\ e)) /\ f /\ j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16; then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j by XBOOLE_1:16; then u in d /\ (((b /\ c) /\ e /\ f) /\ j) by XBOOLE_1:16; hence thesis by A21,A42,XBOOLE_0:def 3; case A43: y=h.B; u in (c /\ (d /\ b)) /\ e /\ f /\ j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) by XBOOLE_1:16; then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) by XBOOLE_1:16; then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) by XBOOLE_1:16; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b by XBOOLE_1:16; hence thesis by A22,A43,XBOOLE_0:def 3; case A44: y=h.C; u in (c /\ (d /\ b)) /\ e /\ f /\ j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) by XBOOLE_1:16; hence thesis by A23,A44,XBOOLE_0:def 3; case A45: y=h.E; u in ((b /\ c) /\ d) /\ (f /\ e) /\ j by A14,A15,A16,A17,A18,A39,XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) by XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e by XBOOLE_1:16; hence thesis by A24,A45,XBOOLE_0:def 3; case A46: y=h.F; u in (((b /\ c) /\ d) /\ e) /\ j /\ f by A14,A15,A16,A17,A18,A39,XBOOLE_1:16; hence thesis by A25,A46,XBOOLE_0:def 3; case y=h.J; hence thesis by A14,A26,A39,XBOOLE_0:def 3; end; hence thesis; end; then u in meet FF by A40,SETFAM_1:def 1; hence thesis by A40,CANTOR_1:def 3; end; Intersect FF c= x proof let t be set; assume A47: t in Intersect FF; h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h & h.J in rng h by A36,ENUMSET1:29; then A48:t in b & t in c & t in d & t in e & t in f & t in j by A21,A22,A23,A24,A25,A26,A37,A47,SETFAM_1:def 1; then t in b /\ c by XBOOLE_0:def 3; then t in (b /\ c) /\ d by A48,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e by A48,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f by A48,XBOOLE_0:def 3; hence thesis by A14,A15,A16,A17,A18,A48,XBOOLE_0:def 3; end; then A49:x = Intersect FF by A38,XBOOLE_0:def 10; x<>{} by A13,EQREL_1:def 6; hence thesis by A11,A19,A27,A49,BVFUNC_2:def 1; end; '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J proof let x be set; assume x in '/\' (G \ {A}); then consider h being Function, FF being Subset-Family of Y such that A50: dom h=(G \ {A}) & rng h = FF & (for d being set st d in (G \ {A}) holds h.d in d) & x=Intersect FF & x<>{} by BVFUNC_2:def 1; A51:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) & F in (G \ {A}) & J in (G \ {A}) by A11,ENUMSET1:29; then A52:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F & h.J in J by A50; A53:h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h & h.J in rng h by A50,A51,FUNCT_1:def 5; then A54:Intersect FF = meet (rng h) by A50,CANTOR_1:def 3; A55:not (x in {{}}) by A50,TARSKI:def 1; A56:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J c= x proof let m be set; assume A57: m in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J; then m in h.B /\ h.C /\ h.D /\ h.E /\ h.F & m in h.J by XBOOLE_0:def 3; then A58:m in h.B /\ h.C /\ h.D /\ h.E & m in h.F by XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D & m in h.E & m in h.F by XBOOLE_0:def 3; then m in h.B /\ h.C & m in h.D by XBOOLE_0:def 3; then A59:m in h.B & m in h.C & m in h.D & m in h.E & m in h.F & m in h.J by A57,A58,XBOOLE_0:def 3; rng h c= {h.B,h.C,h.D,h.E,h.F,h.J} proof let u be set; assume u in rng h; then consider x1 being set such that A60: x1 in dom h & u = h.x1 by FUNCT_1:def 5; x1=B or x1=C or x1=D or x1=E or x1=F or x1=J by A11,A50,A60,ENUMSET1:28; hence thesis by A60,ENUMSET1:29; end; then for y being set holds y in rng h implies m in y by A59,ENUMSET1:28; hence thesis by A50,A53,A54,SETFAM_1:def 1; end; A61: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J proof let m be set; assume m in x; then A62:m in h.B & m in h.C & m in h.D & m in h.E & m in h.F & m in h.J by A50,A53,A54,SETFAM_1:def 1; then m in h.B /\ h.C by XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D by A62,XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D /\ h.E by A62,XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A62,XBOOLE_0:def 3; hence thesis by A62,XBOOLE_0:def 3; end; then A63:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J = x by A56,XBOOLE_0 :def 10; set mbc=h.B /\ h.C; set mbcd=(h.B /\ h.C) /\ h.D; set mbcde=(h.B /\ h.C) /\ h.D /\ h.E; set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F; mbcdef<>{} by A50,A56,A61,XBOOLE_0:def 10; then A64:not (mbcdef in {{}}) by TARSKI:def 1; mbcde<>{} by A50,A56,A61,XBOOLE_0:def 10; then A65:not (mbcde in {{}}) by TARSKI:def 1; mbcd<>{} by A50,A56,A61,XBOOLE_0:def 10; then A66:not (mbcd in {{}}) by TARSKI:def 1; mbc<>{} by A50,A56,A61,XBOOLE_0:def 10; then A67:not (mbc in {{}}) by TARSKI:def 1; mbc in INTERSECTION(B,C) by A52,SETFAM_1:def 5; then mbc in INTERSECTION(B,C) \ {{}} by A67,XBOOLE_0:def 4; then mbc in B '/\' C by PARTIT1:def 4; then mbcd in INTERSECTION(B '/\' C,D) by A52,SETFAM_1:def 5; then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A66,XBOOLE_0:def 4; then mbcd in B '/\' C '/\' D by PARTIT1:def 4; then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A52,SETFAM_1:def 5; then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A65,XBOOLE_0:def 4 ; then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A52,SETFAM_1:def 5 ; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A64,XBOOLE_0:def 4; then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) by A52,A63,SETFAM_1:def 5; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by A55,XBOOLE_0:def 4; hence thesis by PARTIT1:def 4; end; hence thesis by A2,A12,XBOOLE_0:def 10; end; theorem Th2: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J proof {A,B,C,D,E,F,J}={A,B} \/ {C,D,E,F,J} by ENUMSET1:57 .={B,A,C,D,E,F,J} by ENUMSET1:57; hence thesis by Th1; end; theorem Th3: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J proof {A,B,C,D,E,F,J}={A,B,C} \/ {D,E,F,J} by ENUMSET1:58 .={A} \/ {B,C} \/ {D,E,F,J} by ENUMSET1:42 .={A,C,B} \/ {D,E,F,J} by ENUMSET1:42 .={A,C} \/ {B} \/ {D,E,F,J} by ENUMSET1:43 .={C,A,B} \/ {D,E,F,J} by ENUMSET1:43 .={C,A,B,D,E,F,J} by ENUMSET1:58; hence thesis by Th1; end; theorem Th4: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J proof {A,B,C,D,E,F,J}={A,B} \/ {C,D,E,F,J} by ENUMSET1:57 .={A,B} \/ ({C,D} \/ {E,F,J}) by ENUMSET1:48 .={A,B} \/ {D,C,E,F,J} by ENUMSET1:48 .={A,B,D,C,E,F,J} by ENUMSET1:57; hence thesis by Th3; end; theorem Th5: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J proof {A,B,C,D,E,F,J}={A,B,C} \/ {D,E,F,J} by ENUMSET1:58 .={A,B,C} \/ ({D,E} \/ {F,J}) by ENUMSET1:45 .={A,B,C} \/ {E,D,F,J} by ENUMSET1:45 .={A,B,C,E,D,F,J} by ENUMSET1:58; hence thesis by Th4; end; theorem Th6: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J proof {A,B,C,D,E,F,J}={A,B,C,D} \/ {E,F,J} by ENUMSET1:59 .={A,B,C,D} \/ {F,E,J} by ENUMSET1:99 .={A,B,C,D,F,E,J} by ENUMSET1:59; hence thesis by Th5; end; theorem G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J implies CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F proof {A,B,C,D,E,F,J}={A,B,C,D,E} \/ {F,J} by ENUMSET1:60 .={A,B,C,D,E,J,F} by ENUMSET1:60; hence thesis by Th6; end; theorem Th8: for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds h.A = A' & h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J' proof let A,B,C,D,E,F,J be set; let h be Function; let A',B',C',D',E',F',J' be set; assume A1: A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A'); A2: dom (A .--> A') = {A} by CQC_LANG:5; A3: h.A = A' proof A in dom (A .--> A') by A2,TARSKI:def 1; then h.A = (A .--> A').A by A1,FUNCT_4:14; hence thesis by CQC_LANG:6; end; A4: h.B = B' proof not B in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).B by A1,FUNCT_4:12 .= B' by A1,BVFUNC23:7; end; A5: h.C = C' proof not C in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).C by A1,FUNCT_4:12 .= C' by A1,BVFUNC23:7; end; A6: h.D = D' proof not D in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).D by A1,FUNCT_4:12 .= D' by A1,BVFUNC23:7; end; A7: h.E = E' proof not E in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).E by A1,FUNCT_4:12 .= E' by A1,BVFUNC23:7; end; A8: h.F = F' proof not F in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).F by A1,FUNCT_4:12 .= F' by A1,BVFUNC23:7; end; h.J = J' proof not J in dom (A .--> A') by A1,A2,TARSKI:def 1; hence h.J=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')).J by A1,FUNCT_4:12 .= J' by A1,BVFUNC23:7; end; hence thesis by A3,A4,A5,A6,A7,A8; end; theorem Th9: for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J} proof let A,B,C,D,E,F,J be set; let h be Function; let A',B',C',D',E',F',J' be set; assume A1: h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A'); A2: dom (A .--> A') = {A} by CQC_LANG:5; dom h = dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J')) \/ dom (A .--> A') by A1,FUNCT_4:def 1 .= {J,B,C,D,E,F} \/ dom (A .--> A') by BVFUNC23:8 .= ({B,C,D,E,F} \/ {J}) \/ {A} by A2,ENUMSET1:51 .= {B,C,D,E,F,J} \/ {A} by ENUMSET1:55 .= {A,B,C,D,E,F,J} by ENUMSET1:56; hence thesis; end; theorem Th10: for A,B,C,D,E,F,J being set, h being Function, A',B',C',D',E',F',J' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J} proof let A,B,C,D,E,F,J be set; let h be Function; let A',B',C',D',E',F',J' be set; assume h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (A .--> A'); then A1: dom h = {A,B,C,D,E,F,J} by Th9; then A in dom h by ENUMSET1:34; then A2: h.A in rng h by FUNCT_1:def 5; B in dom h by A1,ENUMSET1:34; then A3: h.B in rng h by FUNCT_1:def 5; C in dom h by A1,ENUMSET1:34; then A4: h.C in rng h by FUNCT_1:def 5; D in dom h by A1,ENUMSET1:34; then A5: h.D in rng h by FUNCT_1:def 5; E in dom h by A1,ENUMSET1:34; then A6: h.E in rng h by FUNCT_1:def 5; F in dom h by A1,ENUMSET1:34; then A7: h.F in rng h by FUNCT_1:def 5; J in dom h by A1,ENUMSET1:34; then A8: h.J in rng h by FUNCT_1:def 5; A9:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J} proof let t be set; assume t in rng h; then consider x1 being set such that A10: x1 in dom h & t = h.x1 by FUNCT_1:def 5; x1=A or x1=B or x1=C or x1=D or x1=E or x1=F or x1=J by A1,A10,ENUMSET1:33; hence thesis by A10,ENUMSET1:34; end; {h.A,h.B,h.C,h.D,h.E,h.F,h.J} c= rng h proof let t be set; assume t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J}; hence thesis by A2,A3,A4,A5,A6,A7,A8,ENUMSET1:33; end; hence thesis by A9,XBOOLE_0:def 10; end; theorem for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) meets EqClass(z,A) proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J be a_partition of Y; let z,u be Element of Y; let h be Function; assume that A1:G is independent and A2: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J; reconsider I=EqClass(z,A) as set; reconsider GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) as set; set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (A .--> EqClass(z,A)); A3: dom h = G by A2,Th9; A4: h.A = EqClass(z,A) by A2,Th8; A5: h.B = EqClass(u,B) by A2,Th8; A6: h.C = EqClass(u,C) by A2,Th8; A7: h.D = EqClass(u,D) by A2,Th8; A8: h.E = EqClass(u,E) by A2,Th8; A9: h.F = EqClass(u,F) by A2,Th8; A10: h.J = EqClass(u,J) by A2,Th8; A11: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J by A2,ENUMSET1:33; hence thesis by A4,A5,A6,A7,A8,A9,A10; end; A in dom h by A2,A3,ENUMSET1:34; then A12: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A3,ENUMSET1:34; then A13: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A3,ENUMSET1:34; then A14: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A3,ENUMSET1:34; then A15: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A3,ENUMSET1:34; then A16: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A3,ENUMSET1:34; then A17: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A3,ENUMSET1:34; then A18: h.J in rng h by FUNCT_1:def 5; A19:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J} by Th10; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J by A19,ENUMSET1:33; hence thesis by A4,A5,A6,A7,A8,A9,A10; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A20: Intersect FF = meet (rng h) by A12,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A3,A11,BVFUNC_2:def 5; then consider m being set such that A21: m in Intersect FF by XBOOLE_0:def 1; A22: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) by A4,A5,A6,A7,A8,A9,A10,A12,A13,A14,A15,A16,A17,A18,A20,A21,SETFAM_1: def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\ EqClass(u,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass (u,F) /\ EqClass(u,J) by BVFUNC14:1; then A23: GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A22,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A22,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A22,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A22,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) /\ EqClass(u,J) by A22,XBOOLE_0:def 3; then m in EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(z,A) by A22,A23,XBOOLE_0:def 3; hence thesis by XBOOLE_0:def 7; end; theorem for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J being a_partition of Y, z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & EqClass(z,C '/\' D '/\' E '/\' F '/\' J)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)) proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J be a_partition of Y; let z,u be Element of Y; assume that A1: G is independent and A2: G={A,B,C,D,E,F,J} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & B<>C & B<>D & B<>E & B<>F & B<>J & C<>D & C<>E & C<>F & C<>J & D<>E & D<>F & D<>J & E<>F & E<>J & F<>J & EqClass(z,C '/\' D '/\' E '/\' F '/\' J)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J); A3:CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J by A2,Th1; A4:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J by A2,Th2; reconsider HH=EqClass(z,CompF(B,G)) as set; reconsider I=EqClass(z,A) as set; reconsider GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J)) as set; set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (A .--> EqClass(z,A)); A5: dom h = G by A2,Th9; A6: h.A = EqClass(z,A) by A2,Th8; A7: h.B = EqClass(u,B) by A2,Th8; A8: h.C = EqClass(u,C) by A2,Th8; A9: h.D = EqClass(u,D) by A2,Th8; A10: h.E = EqClass(u,E) by A2,Th8; A11: h.F = EqClass(u,F) by A2,Th8; A12: h.J = EqClass(u,J) by A2,Th8; A13: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J by A2,ENUMSET1:33; hence thesis by A6,A7,A8,A9,A10,A11,A12; end; A in dom h by A2,A5,ENUMSET1:34; then A14: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A5,ENUMSET1:34; then A15: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A5,ENUMSET1:34; then A16: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A5,ENUMSET1:34; then A17: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A5,ENUMSET1:34; then A18: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A5,ENUMSET1:34; then A19: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A5,ENUMSET1:34; then A20: h.J in rng h by FUNCT_1:def 5; A21:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J} by Th10; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J by A21,ENUMSET1:33; hence thesis by A6,A7,A8,A9,A10,A11,A12; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A22: Intersect FF = meet (rng h) by A14,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A5,A13,BVFUNC_2:def 5; then consider m being set such that A23: m in Intersect FF by XBOOLE_0:def 1; A24: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) by A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A17,A18,A19,A20,A22,A23,SETFAM_1 :def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\ EqClass(u,J) by BVFUNC14:1; then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass (u,F) /\ EqClass(u,J) by BVFUNC14:1; then A25: GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A24,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A24,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A24,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A24,XBOOLE_0:def 3; then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u ,E)) /\ EqClass(u,F) /\ EqClass(u,J) by A24,XBOOLE_0:def 3; then A26:GG /\ I <> {} by A24,A25,XBOOLE_0:def 3; then consider p being set such that A27: p in GG /\ I by XBOOLE_0:def 1; GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J) & not (GG /\ I in {{}}) by A26,SETFAM_1:def 5,TARSKI:def 1; then GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J) \ { {}} by XBOOLE_0:def 4; then GG /\ I in (A '/\' ((((B '/\' C) '/\' D) '/\' E) '/\' F '/\' J)) by PARTIT1:def 4; then reconsider p as Element of Y by A27; reconsider K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J) as set; A28:p in K & K in C '/\' D '/\' E '/\' F '/\' J by T_1TOPSP:def 1; p in GG & p in I by A27,XBOOLE_0:def 3; then A29:p in I /\ K by A28,XBOOLE_0:def 3; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J) & not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J) \ {{}} by XBOOLE_0:def 4; then A30: I /\ K in A '/\' (C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4; reconsider L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J) as set; GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) by PARTIT1:16; then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) by PARTIT1:16; then GG = EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) by PARTIT1:16; then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J)) by PARTIT1:16 ; then A31: GG c= L by A2,BVFUNC11:3; A32: p in GG by A27,XBOOLE_0:def 3; p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J) by T_1TOPSP:def 1; then K meets L by A31,A32,XBOOLE_0:3; then K=L by T_1TOPSP:9; then A33:z in K by T_1TOPSP:def 1; z in I by T_1TOPSP:def 1; then A34:z in I /\ K by A33,XBOOLE_0:def 3; z in HH by T_1TOPSP:def 1; then A35:I /\ K meets HH by A34,XBOOLE_0:3; A '/\' (C '/\' D '/\' E '/\' F '/\' J) = A '/\' (C '/\' D '/\' E '/\' F) '/\' J by PARTIT1:16 .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J by PARTIT1:16 .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J by PARTIT1:16 .= A '/\' C '/\' D '/\' E '/\' F '/\' J by PARTIT1:16; then p in HH by A4,A29,A30,A35,EQREL_1:def 6; hence thesis by A3,A32,XBOOLE_0:3; end; theorem Th13: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M proof assume A1: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M; A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7; G \ {A}={A} \/ {B,C,D,E,F,J,M} \ {A} by A1,ENUMSET1:62; then A3:G \ {A} = ({A} \ {A}) \/ ({B,C,D,E,F,J,M} \ {A}) by XBOOLE_1:42; A4:not B in {A} by A1,TARSKI:def 1; A5:not C in {A} by A1,TARSKI:def 1; A6:not D in {A} by A1,TARSKI:def 1; A7:not E in {A} by A1,TARSKI:def 1; A8:not F in {A} by A1,TARSKI:def 1; A9:not J in {A} by A1,TARSKI:def 1; A10:not M in {A} by A1,TARSKI:def 1; {B,C,D,E,F,J,M} \ {A} =({B} \/ {C,D,E,F,J,M}) \ {A} by ENUMSET1:56 .=({B} \ {A}) \/ ({C,D,E,F,J,M} \ {A}) by XBOOLE_1:42 .={B} \/ ({C,D,E,F,J,M} \ {A}) by A4,ZFMISC_1:67 .={B} \/ (({C} \/ {D,E,F,J,M}) \ {A}) by ENUMSET1:51 .={B} \/ (({C} \ {A}) \/ ({D,E,F,J,M} \ {A})) by XBOOLE_1:42 .={B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J,M}) \ {A})) by ENUMSET1:48 .={B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J,M} \ {A}))) by XBOOLE_1:42 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J,M} \ {A}))) by A6,A7,ZFMISC_1:72 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ {M} \ {A}))) by ENUMSET1:43 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ (({F,J} \ {A}) \/ ({M} \ {A})))) by XBOOLE_1:42 .={B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ ({M} \ {A})))) by A8,A9,ZFMISC_1:72 .={B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ ({M} \ {A})))) by A5,ZFMISC_1:67 .={B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ {M}))) by A10,ZFMISC_1:67 .={B} \/ ({C} \/ ({D,E} \/ {F,J,M})) by ENUMSET1:43 .={B} \/ ({C} \/ {D,E,F,J,M}) by ENUMSET1:48 .={B} \/ {C,D,E,F,J,M} by ENUMSET1:51 .={B,C,D,E,F,J,M} by ENUMSET1:56; then A11:G \ {A} = {} \/ {B,C,D,E,F,J,M} by A3,XBOOLE_1:37; A12:B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M c= '/\' (G \ {A}) proof let x be set; assume A13:x in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}} by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) & not x in {{}} by XBOOLE_0:def 4; then consider bcdefj,m being set such that A14: bcdefj in B '/\' C '/\' D '/\' E '/\' F '/\' J & m in M & x = bcdefj /\ m by SETFAM_1:def 5; bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by A14,PARTIT1:def 4; then bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) & not bcdefj in {{}} by XBOOLE_0:def 4; then consider bcdef,j being set such that A15: bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & bcdefj = bcdef /\ j by SETFAM_1:def 5; bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A15,PARTIT1:def 4; then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}} by XBOOLE_0:def 4; then consider bcde,f being set such that A16: bcde in B '/\' C '/\' D '/\' E & f in F & bcdef = bcde /\ f by SETFAM_1:def 5; bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A16,PARTIT1:def 4; then bcde in INTERSECTION(B '/\' C '/\' D,E) & not bcde in {{}} by XBOOLE_0:def 4; then consider bcd,e being set such that A17: bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5; bcd in INTERSECTION(B '/\' C,D) \ {{}} by A17,PARTIT1:def 4; then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4; then consider bc,d being set such that A18: bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5; bc in INTERSECTION(B,C) \ {{}} by A18,PARTIT1:def 4; then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4; then consider b,c being set such that A19: b in B & c in C & bc = b /\ c by SETFAM_1:def 5; set h = (B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j) +* (M .--> m); A20: dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j) +* (M .--> m)) = {M,B,C,D,E,F,J} by Th9 .= {M} \/ {B,C,D,E,F,J} by ENUMSET1:56 .= {B,C,D,E,F,J,M} by ENUMSET1:61; A21: h.D = d by A1,Th8; A22: h.B = b by A1,Th8; A23: h.C = c by A1,Th8; A24: h.E = e by A1,Th8; A25: h.F = f by A1,Th8; A26: h.J = j by A1,Th8; A27: h.M = m by A1,Th8; A28: for p being set st p in (G \ {A}) holds h.p in p proof let p be set; assume p in (G \ {A}); then p=D or p=B or p=C or p=E or p=F or p=J or p=M by A11,ENUMSET1:33; hence thesis by A1,A14,A15,A16,A17,A18,A19,Th8; end; A29: D in dom h by A20,ENUMSET1:34; then A30: h.D in rng h by FUNCT_1:def 5; A31: B in dom h by A20,ENUMSET1:34; A32: C in dom h by A20,ENUMSET1:34; A33: E in dom h by A20,ENUMSET1:34; A34: F in dom h by A20,ENUMSET1:34; A35: J in dom h by A20,ENUMSET1:34; A36: M in dom h by A20,ENUMSET1:34; A37:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M} proof let t be set; assume t in rng h; then consider x1 being set such that A38: x1 in dom h & t = h.x1 by FUNCT_1:def 5; x1=D or x1=B or x1=C or x1=E or x1=F or x1=J or x1=M by A20,A38,ENUMSET1:33; hence thesis by A38,ENUMSET1:34; end; A39: {h.B,h.C,h.D,h.E,h.F,h.J,h.M} c= rng h proof let t be set; assume t in {h.B,h.C,h.D,h.E,h.F,h.J,h.M}; then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J or t=h.M by ENUMSET1:33; hence thesis by A29,A31,A32,A33,A34,A35,A36,FUNCT_1:def 5; end; then A40:rng h = {h.B,h.C,h.D,h.E,h.F,h.J,h.M} by A37,XBOOLE_0:def 10; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.D or t=h.B or t=h.C or t=h.E or t=h.F or t=h.J or t=h.M by A37,ENUMSET1:33; hence thesis by A14,A15,A16,A17,A18,A19,A21,A22,A23,A24,A25,A26,A27; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; reconsider h as Function; A41: Intersect FF = meet (rng h) by A30,CANTOR_1:def 3; A42:x c= Intersect FF proof let u be set; assume A43:u in x; A44:FF<>{} by A40,ENUMSET1:34; for y be set holds y in FF implies u in y proof let y be set; assume A45: y in FF; now per cases by A37,A45,ENUMSET1:33; case A46: y=h.D; u in (d /\ ((b /\ c) /\ e)) /\ f /\ j /\ m by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j /\ m by XBOOLE_1:16; then u in d /\ (((b /\ c) /\ e /\ f) /\ j) /\ m by XBOOLE_1:16; then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m) by XBOOLE_1:16; hence thesis by A21,A46,XBOOLE_0:def 3; case A47: y=h.B; u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) /\ m by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) /\ m by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) /\ m by XBOOLE_1:16; then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) /\ m by XBOOLE_1:16; then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) /\ m by XBOOLE_1:16; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b /\ m by XBOOLE_1:16; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ b by XBOOLE_1:16; hence thesis by A22,A47,XBOOLE_0:def 3; case A48: y=h.C; u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m by XBOOLE_1:16; then u in c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m) by XBOOLE_1:16; hence thesis by A23,A48,XBOOLE_0:def 3; case A49: y=h.E; u in ((b /\ c) /\ d) /\ (f /\ e) /\ j /\ m by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) /\ m by XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) /\ m by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e /\ m by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ e by XBOOLE_1:16; hence thesis by A24,A49,XBOOLE_0:def 3; case A50: y=h.F; u in (((b /\ c) /\ d) /\ e) /\ j /\ f /\ m by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ f by XBOOLE_1:16; hence thesis by A25,A50,XBOOLE_0:def 3; case A51: y=h.J; u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ j by A14,A15,A16,A17,A18,A19,A43,XBOOLE_1:16; hence thesis by A26,A51,XBOOLE_0:def 3; case y=h.M; hence thesis by A14,A27,A43,XBOOLE_0:def 3; end; hence thesis; end; then u in meet FF by A44,SETFAM_1:def 1; hence thesis by A44,CANTOR_1:def 3; end; Intersect FF c= x proof let t be set; assume A52: t in Intersect FF; h.B in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.C in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.D in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.E in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.F in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.J in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} & h.M in {h.B,h.C,h.D,h.E,h.F,h.J,h.M} by ENUMSET1:34; then A53:t in b & t in c & t in d & t in e & t in f & t in j & t in m by A21,A22,A23,A24,A25,A26,A27,A39,A41,A52,SETFAM_1:def 1; then t in b /\ c by XBOOLE_0:def 3; then t in (b /\ c) /\ d by A53,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e by A53,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f by A53,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f /\ j by A53,XBOOLE_0:def 3; hence thesis by A14,A15,A16,A17,A18,A19,A53,XBOOLE_0:def 3; end; then A54:x = Intersect FF by A42,XBOOLE_0:def 10; x<>{} by A13,EQREL_1:def 6; hence thesis by A11,A20,A28,A54,BVFUNC_2:def 1; end; '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M proof let x be set; assume x in '/\' (G \ {A}); then consider h being Function, FF being Subset-Family of Y such that A55: dom h=(G \ {A}) & rng h = FF & (for d being set st d in (G \ {A}) holds h.d in d) & x=Intersect FF & x<>{} by BVFUNC_2:def 1; A56:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) & F in (G \ {A}) & J in (G \ {A}) & M in (G \ {A}) by A11,ENUMSET1:34; then A57:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F & h.J in J & h.M in M by A55; A58:h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h & h.J in rng h & h.M in rng h by A55,A56,FUNCT_1:def 5; then A59:Intersect FF = meet (rng h) by A55,CANTOR_1:def 3; A60:not (x in {{}}) by A55,TARSKI:def 1; A61:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M c= x proof let p be set; assume p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M; then A62:p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J & p in h.M by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F & p in h.J by XBOOLE_0:def 3; then A63:p in h.B /\ h.C /\ h.D /\ h.E & p in h.F by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D & p in h.E & p in h.F by XBOOLE_0:def 3; then p in h.B /\ h.C & p in h.D by XBOOLE_0:def 3; then A64:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F & p in h.J & p in h.M by A62,A63,XBOOLE_0:def 3; rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M} proof let u be set; assume u in rng h; then consider x1 being set such that A65: x1 in dom h & u = h.x1 by FUNCT_1:def 5; x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M by A11,A55,A65,ENUMSET1:33; hence thesis by A65,ENUMSET1:34; end; then for y being set holds y in rng h implies p in y by A64,ENUMSET1:33; hence thesis by A55,A58,A59,SETFAM_1:def 1; end; A66: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M proof let p be set; assume p in x; then A67:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F & p in h.J & p in h.M by A55,A58,A59,SETFAM_1:def 1; then p in h.B /\ h.C by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D by A67,XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E by A67,XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A67,XBOOLE_0:def 3; then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J by A67,XBOOLE_0: def 3 ; hence thesis by A67,XBOOLE_0:def 3; end; then A68:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M = x by A61,XBOOLE_0:def 10; set mbc=h.B /\ h.C; set mbcd=(h.B /\ h.C) /\ h.D; set mbcde=(h.B /\ h.C) /\ h.D /\ h.E; set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F; set mbcdefj=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J; mbcdefj<>{} by A55,A61,A66,XBOOLE_0:def 10; then A69:not (mbcdefj in {{}}) by TARSKI:def 1; mbcdef<>{} by A55,A61,A66,XBOOLE_0:def 10; then A70:not (mbcdef in {{}}) by TARSKI:def 1; mbcde<>{} by A55,A61,A66,XBOOLE_0:def 10; then A71:not (mbcde in {{}}) by TARSKI:def 1; mbcd<>{} by A55,A61,A66,XBOOLE_0:def 10; then A72:not (mbcd in {{}}) by TARSKI:def 1; mbc<>{} by A55,A61,A66,XBOOLE_0:def 10; then A73:not (mbc in {{}}) by TARSKI:def 1; mbc in INTERSECTION(B,C) by A57,SETFAM_1:def 5; then mbc in INTERSECTION(B,C) \ {{}} by A73,XBOOLE_0:def 4; then mbc in B '/\' C by PARTIT1:def 4; then mbcd in INTERSECTION(B '/\' C,D) by A57,SETFAM_1:def 5; then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A72,XBOOLE_0:def 4; then mbcd in B '/\' C '/\' D by PARTIT1:def 4; then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A57,SETFAM_1:def 5; then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A71,XBOOLE_0:def 4 ; then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A57,SETFAM_1:def 5 ; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A70,XBOOLE_0:def 4; then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4; then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) by A57,SETFAM_1:def 5; then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by A69,XBOOLE_0:def 4; then mbcdefj in (B '/\' C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) by A57,A68,SETFAM_1:def 5; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}} by A60,XBOOLE_0:def 4; hence thesis by PARTIT1:def 4; end; hence thesis by A2,A12,XBOOLE_0:def 10; end; theorem Th14: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M proof {A,B,C,D,E,F,J,M}={A,B} \/ {C,D,E,F,J,M} by ENUMSET1:63 .={B,A,C,D,E,F,J,M} by ENUMSET1:63; hence thesis by Th13; end; theorem Th15: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M proof {A,B,C,D,E,F,J,M} ={A,B,C} \/ {D,E,F,J,M} by ENUMSET1:64 .={A} \/ {B,C} \/ {D,E,F,J,M} by ENUMSET1:42 .={A,C,B} \/ {D,E,F,J,M} by ENUMSET1:42 .={A,C,B,D,E,F,J,M} by ENUMSET1:64; hence thesis by Th14; end; theorem Th16: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M proof {A,B,C,D,E,F,J,M} ={A,B} \/ {C,D,E,F,J,M} by ENUMSET1:63 .={A,B} \/ ({C,D} \/ {E,F,J,M}) by ENUMSET1:52 .={A,B} \/ {D,C,E,F,J,M} by ENUMSET1:52 .={A,B,D,C,E,F,J,M} by ENUMSET1:63; hence thesis by Th15; end; theorem Th17: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M proof {A,B,C,D,E,F,J,M} ={A,B,C} \/ {D,E,F,J,M} by ENUMSET1:64 .={A,B,C} \/ ({D,E} \/ {F,J,M}) by ENUMSET1:48 .={A,B,C} \/ ({E,D,F,J,M}) by ENUMSET1:48 .={A,B,C,E,D,F,J,M} by ENUMSET1:64; hence thesis by Th16; end; theorem Th18: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M proof {A,B,C,D,E,F,J,M} ={A,B,C,D} \/ {E,F,J,M} by ENUMSET1:65 .={A,B,C,D} \/ ({E,F} \/ {J,M}) by ENUMSET1:45 .={A,B,C,D} \/ ({F,E,J,M}) by ENUMSET1:45 .={A,B,C,D,F,E,J,M} by ENUMSET1:65; hence thesis by Th17; end; theorem Th19: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M proof {A,B,C,D,E,F,J,M} ={A,B,C,D,E} \/ {F,J,M} by ENUMSET1:66 .={A,B,C,D,E} \/ ({J,F} \/ {M}) by ENUMSET1:43 .={A,B,C,D,E} \/ ({J,F,M}) by ENUMSET1:43 .={A,B,C,D,E,J,F,M} by ENUMSET1:66; hence thesis by Th18; end; theorem G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M implies CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J proof {A,B,C,D,E,F,J,M} ={A,B,C,D,E,F} \/ {J,M} by ENUMSET1:67 .={A,B,C,D,E,F,M,J} by ENUMSET1:67; hence thesis by Th19; end; theorem Th21: for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J' proof let A,B,C,D,E,F,J,M be set; let h be Function; let A',B',C',D',E',F',J',M' be set; assume A1:A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A'); A2: dom (A .--> A') = {A} by CQC_LANG:5; A3: h.B = B' proof not B in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).B by A1,FUNCT_4:12 .= B' by A1,Th8; hence thesis; end; A4: h.C = C' proof not C in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).C by A1,FUNCT_4:12; hence thesis by A1,Th8; end; A5: h.D = D' proof not D in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).D by A1,FUNCT_4:12 .= D' by A1,Th8; hence thesis; end; A6: h.E = E' proof not E in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).E by A1,FUNCT_4:12 .= E' by A1,Th8; hence thesis; end; A7: h.F = F' proof not F in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).F by A1,FUNCT_4:12 .= F' by A1,Th8; hence thesis; end; h.J = J' proof not J in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.J=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')).J by A1,FUNCT_4:12 .= J' by A1,Th8; hence thesis; end; hence thesis by A3,A4,A5,A6,A7; end; theorem Th22: for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J,M} proof let A,B,C,D,E,F,J,M be set; let h be Function; let A',B',C',D',E',F',J',M' be set; assume A1: h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A'); A2: dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M')) = {M,B,C,D,E,F,J} by Th9 .= {M} \/ {B,C,D,E,F,J} by ENUMSET1:56 .= {B,C,D,E,F,J,M} by ENUMSET1:61; dom (A .--> A') = {A} by CQC_LANG:5; then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +*(A .--> A')) = {B,C,D,E,F,J,M} \/ {A} by A2,FUNCT_4:def 1 .= {A,B,C,D,E,F,J,M} by ENUMSET1:62; hence thesis by A1; end; theorem Th23: for A,B,C,D,E,F,J,M being set, h being Function, A',B',C',D',E',F',J',M' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} proof let A,B,C,D,E,F,J,M be set; let h be Function; let A',B',C',D',E',F',J',M' be set; assume h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (A .--> A'); then A1: dom h = {A,B,C,D,E,F,J,M} by Th22; then A in dom h by ENUMSET1:39; then A2: h.A in rng h by FUNCT_1:def 5; B in dom h by A1,ENUMSET1:39; then A3: h.B in rng h by FUNCT_1:def 5; C in dom h by A1,ENUMSET1:39; then A4: h.C in rng h by FUNCT_1:def 5; D in dom h by A1,ENUMSET1:39; then A5: h.D in rng h by FUNCT_1:def 5; E in dom h by A1,ENUMSET1:39; then A6: h.E in rng h by FUNCT_1:def 5; F in dom h by A1,ENUMSET1:39; then A7: h.F in rng h by FUNCT_1:def 5; J in dom h by A1,ENUMSET1:39; then A8: h.J in rng h by FUNCT_1:def 5; M in dom h by A1,ENUMSET1:39; then A9: h.M in rng h by FUNCT_1:def 5; A10:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} proof let t be set; assume t in rng h; then consider x1 being set such that A11: x1 in dom h & t = h.x1 by FUNCT_1:def 5; x1=A or x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M by A1,A11,ENUMSET1:38; hence thesis by A11,ENUMSET1:39; end; {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} c= rng h proof let t be set; assume t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M}; hence thesis by A2,A3,A4,A5,A6,A7,A8,A9,ENUMSET1:38; end; hence thesis by A10,XBOOLE_0:def 10; end; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M being a_partition of Y , z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\ EqClass(z,A) <> {} proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M be a_partition of Y; let z,u be Element of Y; let h be Function; assume that A1:G is independent and A2: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M; reconsider I=EqClass(z,A) as set; reconsider GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) as set; set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (M .--> EqClass(u,M)) +* (A .--> EqClass(z,A)); A3: dom h = G by A2,Th22; A4: h.A = EqClass(z,A) by YELLOW14:3; A5: h.B = EqClass(u,B) by A2,Th21; A6: h.C = EqClass(u,C) by A2,Th21; A7: h.D = EqClass(u,D) by A2,Th21; A8: h.E = EqClass(u,E) by A2,Th21; A9: h.F = EqClass(u,F) by A2,Th21; A10: h.J = EqClass(u,J) by A2,Th21; A11: h.M = EqClass(u,M) by A2,BVFUNC14:15; A12: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M by A2,ENUMSET1:38; hence thesis by A4,A5,A6,A7,A8,A9,A10,A11; end; A in dom h by A2,A3,ENUMSET1:39; then A13: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A3,ENUMSET1:39; then A14: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A3,ENUMSET1:39; then A15: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A3,ENUMSET1:39; then A16: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A3,ENUMSET1:39; then A17: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A3,ENUMSET1:39; then A18: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A3,ENUMSET1:39; then A19: h.J in rng h by FUNCT_1:def 5; M in dom h by A2,A3,ENUMSET1:39; then A20: h.M in rng h by FUNCT_1:def 5; A21:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} by Th23; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J or t=h.M by A21,ENUMSET1:38; hence thesis by A4,A5,A6,A7,A8,A9,A10,A11; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A22: Intersect FF = meet (rng h) by A13,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A3,A12,BVFUNC_2:def 5; then consider m being set such that A23: m in Intersect FF by XBOOLE_0:def 1; A24: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) & m in EqClass(u,M) by A4,A5,A6,A7,A8,A9,A10,A11,A13,A14,A15,A16,A17,A18,A19,A20,A22,A23, SETFAM_1:def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = (EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = ((((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M) by BVFUNC14:1; then A25: GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A24,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A24,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A24,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A24,XBOOLE_0:def 3; then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u, E) /\ EqClass(u,F) /\ EqClass(u,J) by A24,XBOOLE_0:def 3; then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u, E) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) by A24,XBOOLE_0:def 3; hence thesis by A24,A25,XBOOLE_0:def 3; end; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M being a_partition of Y , z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)) proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M be a_partition of Y; let z,u be Element of Y; assume that A1:G is independent and A2: G={A,B,C,D,E,F,J,M} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & C<>D & C<>E & C<>F & C<>J & C<>M & D<>E & D<>F & D<>J & D<>M & E<>F & E<>J & E<>M & F<>J & F<>M & J<>M & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M); A3:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M by A2,Th14; set HH=EqClass(z,CompF(B,G)), I=EqClass(z,A), GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J '/\' M)); A4: GG=EqClass(u,CompF(A,G)) by A2,Th13; set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (M .--> EqClass(u,M)) +* (A .--> EqClass(z,A)); A5: dom h = G by A2,Th22; A6: h.A = EqClass(z,A) by YELLOW14:3; A7: h.B = EqClass(u,B) by A2,Th21; A8: h.C = EqClass(u,C) by A2,Th21; A9: h.D = EqClass(u,D) by A2,Th21; A10: h.E = EqClass(u,E) by A2,Th21; A11: h.F = EqClass(u,F) by A2,Th21; A12: h.J = EqClass(u,J) by A2,Th21; A13: h.M = EqClass(u,M) by A2,BVFUNC14:15; A14: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M by A2,ENUMSET1:38; hence thesis by A6,A7,A8,A9,A10,A11,A12,A13; end; A in dom h by A2,A5,ENUMSET1:39; then A15: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A5,ENUMSET1:39; then A16: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A5,ENUMSET1:39; then A17: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A5,ENUMSET1:39; then A18: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A5,ENUMSET1:39; then A19: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A5,ENUMSET1:39; then A20: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A5,ENUMSET1:39; then A21: h.J in rng h by FUNCT_1:def 5; M in dom h by A2,A5,ENUMSET1:39; then A22: h.M in rng h by FUNCT_1:def 5; A23:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M} by Th23; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J or t=h.M by A23,ENUMSET1:38; hence thesis by A6,A7,A8,A9,A10,A11,A12,A13; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A24: Intersect FF = meet (rng h) by A15,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A5,A14,BVFUNC_2:def 5; then consider m being set such that A25: m in Intersect FF by XBOOLE_0:def 1; A26: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) & m in EqClass(u,M) by A6,A7,A8,A9,A10,A11,A12,A13,A15,A16,A17,A18,A19,A20,A21,A22,A24,A25, SETFAM_1:def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) by BVFUNC14:1; then GG = ((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) by BVFUNC14:1; then A27: GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A26,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A26,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A26,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A26,XBOOLE_0:def 3; then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u ,E)) /\ EqClass(u,F) /\ EqClass(u,J) by A26,XBOOLE_0:def 3; then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M) by A26,XBOOLE_0:def 3; then GG /\ I <> {} by A26,A27,XBOOLE_0:def 3; then consider p being set such that A28: p in GG /\ I by XBOOLE_0:def 1; reconsider p as Element of Y by A28; reconsider K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M) as set; A29:p in K & K in C '/\' D '/\' E '/\' F '/\' J '/\' M by T_1TOPSP:def 1; p in GG & p in I by A28,XBOOLE_0:def 3; then A30:p in I /\ K by A29,XBOOLE_0:def 3; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M) & not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M) \ { {}} by XBOOLE_0:def 4; then A31: I /\ K in A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M) by PARTIT1: def 4; reconsider L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M) as set; GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J '/\' M) by PARTIT1:16; then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J '/\' M) by PARTIT1:16; then GG = EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J '/\' M) by PARTIT1:16; then GG = EqClass(u,B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) by PARTIT1:16; then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M)) by PARTIT1:16; then A32: GG c= L by A2,BVFUNC11:3; A33: p in GG by A28,XBOOLE_0:def 3; p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M) by T_1TOPSP:def 1; then K meets L by A32,A33,XBOOLE_0:3; then K=L by T_1TOPSP:9; then A34:z in K by T_1TOPSP:def 1; z in I by T_1TOPSP:def 1; then A35:z in I /\ K by A34,XBOOLE_0:def 3; z in HH by T_1TOPSP:def 1; then A36:I /\ K meets HH by A35,XBOOLE_0:3; A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M) = A '/\' (C '/\' D '/\' E '/\' F '/\' J) '/\' M by PARTIT1:16 .= A '/\' (C '/\' D '/\' E '/\' F) '/\' J '/\' M by PARTIT1:16 .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J '/\' M by PARTIT1:16 .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J '/\' M by PARTIT1:16 .= A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M by PARTIT1:16; then p in HH by A3,A30,A31,A36,EQREL_1:def 6; hence thesis by A4,A33,XBOOLE_0:3; end; scheme UI10 {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10()->set, P[set,set,set,set,set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8(),x9(),x10()] provided A1: for x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 being set holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] by A1; Lm1: x in union({X,{y}}) iff x in X or x=y proof A1: x in union({X,{y}}) implies x in X or x in {y} proof assume x in union({X,{y}}); then ex Z be set st x in Z & Z in {X,{y}} by TARSKI:def 4; hence thesis by TARSKI:def 2; end; A2: X in {X,{y}} & {y} in {X,{y}} by TARSKI:def 2; x in {y} iff x=y by TARSKI:def 1; hence thesis by A1,A2,TARSKI:def 4; end; definition let x1,x2,x3,x4,x5,x6,x7,x8,x9; func { x1,x2,x3,x4,x5,x6,x7,x8,x9 } -> set means :Def1: x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9; existence proof take union({{x1,x2,x3,x4,x5,x6,x7,x8},{x9}}); let x; x in { x1,x2,x3,x4,x5,x6,x7,x8 } iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x = x6 or x=x7 or x=x8 by ENUMSET1:38,39; hence thesis by Lm1; end; uniqueness proof defpred _P[set] means $1=x1 or $1=x2 or $1=x3 or $1=x4 or $1=x5 or $1=x6 or $1=x7 or $1=x8 or $1=x9; thus for X, Y being set st (for x being set holds x in X iff _P[x]) & (for x being set holds x in Y iff _P[x]) holds X = Y from SetEq; end; end; Lm2: x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9 proof defpred P[set,set,set,set,set,set,set,set,set] means for X being set holds X = { $1,$2,$3,$4,$5,$6,$7,$8,$9 } iff for x holds x in X iff x=$1 or x=$2 or x=$3 or x=$4 or x=$5 or x = $6 or x = $7 or x = $8 or x = $9; A1: for x1,x2,x3,x4,x5,x6,x7,x8,x9 holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9] by Def1; P[x1,x2,x3,x4,x5,x6,x7,x8,x9] from UI9(A1); hence thesis; end; theorem x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9 by Lm2; Lm3: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } proof now let x; A1: x in { x1,x2,x3,x4 } iff x=x1 or x=x2 or x=x3 or x=x4 by ENUMSET1:18,19; x in { x5,x6,x7,x8,x9 } iff x=x5 or x=x6 or x=x7 or x=x8 or x=x9 by ENUMSET1:23,24; hence x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } iff x in { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by A1,Lm2,XBOOLE_0:def 2; end; hence thesis by TARSKI:2; end; theorem Th27: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= ({ x1 } \/ { x2,x3,x4 }) \/ { x5,x6,x7,x8,x9 } by ENUMSET1:44 .= { x1 } \/ ({ x2,x3,x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4 .= { x1 } \/ { x2,x3,x4,x5,x6,x7,x8,x9 } by ENUMSET1:64; end; theorem Th28: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2 } \/ { x3,x4 } \/ { x5,x6,x7,x8,x9 } by ENUMSET1:45 .= { x1,x2 } \/ ({ x3,x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4 .= { x1,x2 } \/ { x3,x4,x5,x6,x7,x8,x9 } by ENUMSET1:57; end; theorem Th29: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2,x3 } \/ { x4 } \/ { x5,x6,x7,x8,x9 } by ENUMSET1:46 .= { x1,x2,x3 } \/ ({ x4 } \/ { x5,x6,x7,x8,x9 }) by XBOOLE_1:4 .= { x1,x2,x3 } \/ { x4,x5,x6,x7,x8,x9 } by ENUMSET1:51; end; theorem { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 ; theorem Th31: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2,x3,x4 } \/ ({x5 } \/ { x6,x7,x8,x9 }) by ENUMSET1:47 .= { x1,x2,x3,x4 } \/ {x5 } \/ { x6,x7,x8,x9 } by XBOOLE_1:4 .= { x1,x2,x3,x4,x5 } \/ { x6,x7,x8,x9 } by ENUMSET1:50; end; theorem Th32: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2,x3,x4 } \/ ({ x5,x6 } \/ { x7,x8,x9 }) by ENUMSET1:48 .= { x1,x2,x3,x4 } \/ { x5,x6 } \/ { x7,x8,x9 } by XBOOLE_1:4 .= { x1,x2,x3,x4,x5,x6 } \/ { x7,x8,x9 } by ENUMSET1:54; end; theorem Th33: { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2,x3,x4 } \/ ({ x5,x6,x7 } \/ { x8,x9 }) by ENUMSET1:49 .= { x1,x2,x3,x4 } \/ { x5,x6,x7 } \/ { x8,x9 } by XBOOLE_1:4 .= { x1,x2,x3,x4,x5,x6,x7 } \/ { x8,x9 } by ENUMSET1:59; end; theorem { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 } proof thus { x1,x2,x3,x4,x5,x6,x7,x8,x9 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8,x9 } by Lm3 .= { x1,x2,x3,x4 } \/ ({ x5,x6,x7,x8 } \/ { x9 }) by ENUMSET1:50 .= { x1,x2,x3,x4 } \/ { x5,x6,x7,x8 } \/ { x9 } by XBOOLE_1:4 .= { x1,x2,x3,x4,x5,x6,x7,x8 } \/ { x9 } by ENUMSET1:65; end; theorem Th35: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; assume A1: G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N; A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7; G \ {A}={A} \/ {B,C,D,E,F,J,M,N} \ {A} by A1,Th27; then A3:G \ {A} = ({A} \ {A}) \/ ({B,C,D,E,F,J,M,N} \ {A}) by XBOOLE_1:42; A4:not B in {A} by A1,TARSKI:def 1; A5:not C in {A} by A1,TARSKI:def 1; A6:not D in {A} by A1,TARSKI:def 1; A7:not E in {A} by A1,TARSKI:def 1; A8:not F in {A} by A1,TARSKI:def 1; A9:not J in {A} by A1,TARSKI:def 1; A10:not M in {A} by A1,TARSKI:def 1; A11:not N in {A} by A1,TARSKI:def 1; A12:{D,E} \ {A} = {D,E} by A6,A7,ZFMISC_1:72; {B,C,D,E,F,J,M,N} \ {A} = ({B} \/ {C,D,E,F,J,M,N}) \ {A} by ENUMSET1:62 .= ({B} \ {A}) \/ ({C,D,E,F,J,M,N} \ {A}) by XBOOLE_1:42 .= {B} \/ ({C,D,E,F,J,M,N} \ {A}) by A4,ZFMISC_1:67 .= {B} \/ (({C} \/ {D,E,F,J,M,N}) \ {A}) by ENUMSET1:56 .= {B} \/ (({C} \ {A}) \/ ({D,E,F,J,M,N} \ {A})) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F,J,M,N}) \ {A})) by ENUMSET1:52 .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F,J,M,N} \ {A}))) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ {M,N} \ {A}))) by A12,ENUMSET1:45 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ (({F,J} \ {A}) \/ ({M,N} \ {A})))) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F,J} \/ ({M,N} \ {A})))) by A8,A9,ZFMISC_1:72 .= {B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ ({M,N} \ {A})))) by A5,ZFMISC_1:67 .= {B} \/ ({C} \/ ({D,E} \/ ({F,J} \/ {M,N}))) by A10,A11,ZFMISC_1:72 .= {B} \/ ({C} \/ ({D,E} \/ {F,J,M,N})) by ENUMSET1:45 .= {B} \/ ({C} \/ {D,E,F,J,M,N}) by ENUMSET1:52 .= {B} \/ {C,D,E,F,J,M,N} by ENUMSET1:56 .= {B,C,D,E,F,J,M,N} by ENUMSET1:62; then A13:G \ {A} = {} \/ {B,C,D,E,F,J,M,N} by A3,XBOOLE_1:37; A14:B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N c= '/\' (G \ {A}) proof let x be set; assume A15:x in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) \ { {}} by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) & not x in {{}} by XBOOLE_0:def 4; then consider bcdefjm,n being set such that A16: bcdefjm in B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M & n in N & x = bcdefjm /\ n by SETFAM_1:def 5; bcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ {{}} by A16,PARTIT1:def 4; then bcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) & not bcdefjm in {{}} by XBOOLE_0:def 4; then consider bcdefj,m being set such that A17: bcdefj in B '/\' C '/\' D '/\' E '/\' F '/\' J & m in M & bcdefjm = bcdefj /\ m by SETFAM_1:def 5; bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by A17,PARTIT1:def 4; then bcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) & not bcdefj in {{}} by XBOOLE_0:def 4; then consider bcdef,j being set such that A18: bcdef in B '/\' C '/\' D '/\' E '/\' F & j in J & bcdefj = bcdef /\ j by SETFAM_1:def 5; bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A18,PARTIT1:def 4; then bcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not bcdef in {{}} by XBOOLE_0:def 4; then consider bcde,f being set such that A19: bcde in B '/\' C '/\' D '/\' E & f in F & bcdef = bcde /\ f by SETFAM_1:def 5; bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A19,PARTIT1:def 4; then bcde in INTERSECTION(B '/\' C '/\' D,E) & not bcde in {{}} by XBOOLE_0:def 4; then consider bcd,e being set such that A20: bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5; bcd in INTERSECTION(B '/\' C,D) \ {{}} by A20,PARTIT1:def 4; then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4; then consider bc,d being set such that A21: bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5; bc in INTERSECTION(B,C) \ {{}} by A21,PARTIT1:def 4; then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4; then consider b,c being set such that A22: b in B & c in C & bc = b /\ c by SETFAM_1:def 5; set h = (B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j) +* (M .--> m) +* (N .--> n); A23: dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f) +* (J .--> j) +* (M .--> m) +* (N .--> n)) = {N,B,C,D,E,F,J,M} by Th22 .= {N} \/ {B,C,D,E,F,J,M} by ENUMSET1:62 .= {B,C,D,E,F,J,M,N} by ENUMSET1:68; A24: h.D = d by A1,Th21; A25: h.B = b by A1,Th21; A26: h.C = c by A1,Th21; A27: h.E = e by A1,Th21; A28: h.F = f by A1,Th21; A29: h.J = j by A1,Th21; A30: h.M = m by A1,BVFUNC14:15; A31: h.N = n by YELLOW14:3; A32: for p being set st p in (G \ {A}) holds h.p in p proof let p be set; assume p in (G \ {A}); then p=B or p=C or p=D or p=E or p=F or p=J or p=M or p=N by A13,ENUMSET1:38; hence thesis by A1,A16,A17,A18,A19,A20,A21,A22,Th21,BVFUNC14:15, YELLOW14:3; end; A33: D in dom h by A23,ENUMSET1:39; then A34: h.D in rng h by FUNCT_1:def 5; A35: B in dom h by A23,ENUMSET1:39; A36: C in dom h by A23,ENUMSET1:39; A37: E in dom h by A23,ENUMSET1:39; A38: F in dom h by A23,ENUMSET1:39; A39: J in dom h by A23,ENUMSET1:39; A40: M in dom h by A23,ENUMSET1:39; A41: N in dom h by A23,ENUMSET1:39; A42:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} proof let t be set; assume t in rng h; then consider x1 being set such that A43: x1 in dom h & t = h.x1 by FUNCT_1:def 5; now per cases by A23,A43,ENUMSET1:38; case x1=D; hence thesis by A43,ENUMSET1:39; case x1=B; hence thesis by A43,ENUMSET1:39; case x1=C; hence thesis by A43,ENUMSET1:39; case x1=E; hence thesis by A43,ENUMSET1:39; case x1=F; hence thesis by A43,ENUMSET1:39; case x1=J; hence thesis by A43,ENUMSET1:39; case x1=M; hence thesis by A43,ENUMSET1:39; case x1=N; hence thesis by A43,ENUMSET1:39; end; hence thesis; end; {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} c= rng h proof let t be set; assume A44:t in {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}; now per cases by A44,ENUMSET1:38; case t=h.D; hence thesis by A33,FUNCT_1:def 5; case t=h.B; hence thesis by A35,FUNCT_1:def 5; case t=h.C; hence thesis by A36,FUNCT_1:def 5; case t=h.E; hence thesis by A37,FUNCT_1:def 5; case t=h.F; hence thesis by A38,FUNCT_1:def 5; case t=h.J; hence thesis by A39,FUNCT_1:def 5; case t=h.M; hence thesis by A40,FUNCT_1:def 5; case t=h.N; hence thesis by A41,FUNCT_1:def 5; end; hence thesis; end; then A45:rng h = {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by A42,XBOOLE_0:def 10 ; rng h c= bool Y proof let t be set; assume A46:t in rng h; now per cases by A42,A46,ENUMSET1:38; case t=h.D; hence thesis by A21,A24; case t=h.B; hence thesis by A22,A25; case t=h.C; hence thesis by A22,A26; case t=h.E; hence thesis by A20,A27; case t=h.F; hence thesis by A19,A28; case t=h.J; hence thesis by A18,A29; case t=h.M; hence thesis by A17,A30; case t=h.N; hence thesis by A16,A31; end; hence thesis; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; reconsider h as Function; A47: Intersect FF = meet (rng h) by A34,CANTOR_1:def 3; A48:x c= Intersect FF proof let u be set; assume A49:u in x; A50:FF<>{} by A45,ENUMSET1:39; for y be set holds y in FF implies u in y proof let y be set; assume A51: y in FF; now per cases by A42,A51,ENUMSET1:38; case A52: y=h.D; u in (d /\ ((b /\ c) /\ e)) /\ f /\ j /\ m /\ n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16; then u in (d /\ ((b /\ c) /\ e /\ f)) /\ j /\ m /\ n by XBOOLE_1:16; then u in d /\ (((b /\ c) /\ e /\ f) /\ j) /\ m /\ n by XBOOLE_1:16; then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m) /\ n by XBOOLE_1:16; then u in d /\ ((((b /\ c) /\ e /\ f) /\ j) /\ m /\ n) by XBOOLE_1:16; hence thesis by A24,A52,XBOOLE_0:def 3; case A53: y=h.B; u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m /\ n by A16,A17,A18,A19,A20, A21,A22,A49,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m /\ n by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ (f /\ b)) /\ j) /\ m /\ n by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ ((f /\ b) /\ j)) /\ m /\ n by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ (f /\ (j /\ b))) /\ m /\ n by XBOOLE_1:16; then u in (c /\ (d /\ e)) /\ (f /\ (j /\ b)) /\ m /\ n by XBOOLE_1:16; then u in ((c /\ (d /\ e)) /\ f) /\ (j /\ b) /\ m /\ n by XBOOLE_1:16; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ b /\ m /\ n by XBOOLE_1:16; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ b) /\ n by XBOOLE_1:16 ; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ b /\ n) by XBOOLE_1:16 ; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ (b /\ n)) by XBOOLE_1: 16 ; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ (n /\ b) by XBOOLE_1:16 ; then u in (((c /\ (d /\ e)) /\ f) /\ j) /\ m /\ n /\ b by XBOOLE_1:16; hence thesis by A25,A53,XBOOLE_0:def 3; case A54: y=h.C; u in (c /\ (d /\ b)) /\ e /\ f /\ j /\ m /\ n by A16,A17,A18,A19,A20, A21,A22,A49,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) /\ j /\ m /\ n by XBOOLE_1:16; then u in c /\ ((((d /\ e) /\ b) /\ f) /\ j) /\ m /\ n by XBOOLE_1:16; then u in c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m) /\ n by XBOOLE_1:16 ; then u in c /\ ((((((d /\ e) /\ b) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1: 16; hence thesis by A26,A54,XBOOLE_0:def 3; case A55: y=h.E; u in ((b /\ c) /\ d) /\ (f /\ e) /\ j /\ m /\ n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ e) /\ j) /\ m /\ n by XBOOLE_1:16; then u in ((b /\ c) /\ d) /\ ((f /\ j) /\ e) /\ m /\ n by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ e /\ m /\ n by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ (e /\ m) /\ n by XBOOLE_1:16 ; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ ((m /\ e) /\ n) by XBOOLE_1: 16 ; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ (m /\ (n /\ e)) by XBOOLE_1: 16 ; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ (n /\ e) by XBOOLE_1:16 ; then u in (((b /\ c) /\ d) /\ (f /\ j)) /\ m /\ n /\ e by XBOOLE_1:16; hence thesis by A27,A55,XBOOLE_0:def 3; case A56: y=h.F; u in (((b /\ c) /\ d) /\ e) /\ j /\ f /\ m /\ n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ f /\ n by XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ e) /\ j /\ m /\ n /\ f by XBOOLE_1:16; hence thesis by A28,A56,XBOOLE_0:def 3; case A57: y=h.J; u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ j /\ n by A16,A17,A18,A19,A20,A21,A22,A49,XBOOLE_1:16; then u in (((b /\ c) /\ d) /\ e) /\ f /\ m /\ n /\ j by XBOOLE_1:16; hence thesis by A29,A57,XBOOLE_0:def 3; case A58: y=h.M; u in (((b /\ c) /\ d) /\ e) /\ f /\ j /\ n /\ m by A16,A17,A18,A19, A20,A21,A22,A49,XBOOLE_1:16; hence thesis by A30,A58,XBOOLE_0:def 3; case y=h.N; hence thesis by A16,A31,A49,XBOOLE_0:def 3; end; hence thesis; end; then u in meet FF by A50,SETFAM_1:def 1; hence thesis by A50,CANTOR_1:def 3; end; Intersect FF c= x proof let t be set; assume A59: t in Intersect FF; h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h & h.J in rng h & h.M in rng h & h.N in rng h by A45,ENUMSET1:39; then A60:t in b & t in c & t in d & t in e & t in f & t in j & t in m & t in n by A24,A25,A26,A27,A28,A29,A30,A31,A47,A59,SETFAM_1:def 1; then t in b /\ c by XBOOLE_0:def 3; then t in (b /\ c) /\ d by A60,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e by A60,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f by A60,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f /\ j by A60,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e /\ f /\ j /\ m by A60,XBOOLE_0:def 3; hence thesis by A16,A17,A18,A19,A20,A21,A22,A60,XBOOLE_0:def 3; end; then A61:x = Intersect FF by A48,XBOOLE_0:def 10; x<>{} by A15,EQREL_1:def 6; hence thesis by A13,A23,A32,A61,BVFUNC_2:def 1; end; '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N proof let x be set; assume x in '/\' (G \ {A}); then consider h being Function, FF being Subset-Family of Y such that A62: dom h=(G \ {A}) & rng h = FF & (for d being set st d in (G \ {A}) holds h.d in d) & x=Intersect FF & x<>{} by BVFUNC_2:def 1; A63:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) & F in (G \ {A}) & J in (G \ {A}) & M in (G \ {A}) & N in (G \ {A}) by A13,ENUMSET1:39; then A64:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F & h.J in J & h.M in M & h.N in N by A62; A65:h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h & h.J in rng h & h.M in rng h & h.N in rng h by A62,A63,FUNCT_1:def 5; then A66:Intersect FF = meet (rng h) by A62,CANTOR_1:def 3; A67:not (x in {{}}) by A62,TARSKI:def 1; A68:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N c= x proof let p be set; assume A69: p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N; then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M & p in h . N by XBOOLE_0:def 3; then A70: p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J & p in h.M by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F & p in h.J by XBOOLE_0:def 3 ; then A71:p in h.B /\ h.C /\ h.D /\ h.E & p in h.F by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D & p in h.E & p in h.F by XBOOLE_0:def 3; then p in h.B /\ h.C & p in h.D by XBOOLE_0:def 3; then A72:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F & p in h.J & p in h.M & p in h.N by A69,A70,A71,XBOOLE_0:def 3; A73:rng h c= {h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} proof let u be set; assume u in rng h; then consider x1 being set such that A74: x1 in dom h & u = h.x1 by FUNCT_1:def 5; x1=B or x1=C or x1=D or x1=E or x1=F or x1=J or x1=M or x1=N by A13,A62,A74,ENUMSET1:38; hence thesis by A74,ENUMSET1:39; end; for y being set holds y in rng h implies p in y proof let y be set; assume y in rng h; hence thesis by A72,A73,ENUMSET1:38; end; hence thesis by A62,A65,A66,SETFAM_1:def 1; end; A75: x c= ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N proof let p be set; assume p in x; then A76:p in h.B & p in h.C & p in h.D & p in h.E & p in h.F & p in h.J & p in h.M & p in h.N by A62,A65,A66,SETFAM_1:def 1; then p in h.B /\ h.C by XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D by A76,XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E by A76,XBOOLE_0:def 3; then p in h.B /\ h.C /\ h.D /\ h.E /\ h.F by A76,XBOOLE_0:def 3; then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J by A76,XBOOLE_0:def 3; then p in ((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M by A76,XBOOLE_0:def 3; hence thesis by A76,XBOOLE_0:def 3; end; then A77:((((h.B /\ h.C) /\ h.D) /\ h.E) /\ h.F) /\ h.J /\ h.M /\ h.N = x by A68,XBOOLE_0:def 10; set mbc=h.B /\ h.C; set mbcd=(h.B /\ h.C) /\ h.D; set mbcde=(h.B /\ h.C) /\ h.D /\ h.E; set mbcdef=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F; set mbcdefj=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J; set mbcdefjm=((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F /\ h.J /\ h.M; mbcdefjm<>{} by A62,A68,A75,XBOOLE_0:def 10; then A78:not (mbcdefjm in {{}}) by TARSKI:def 1; mbcdefj<>{} by A62,A68,A75,XBOOLE_0:def 10; then A79:not (mbcdefj in {{}}) by TARSKI:def 1; mbcdef<>{} by A62,A68,A75,XBOOLE_0:def 10; then A80:not (mbcdef in {{}}) by TARSKI:def 1; mbcde<>{} by A62,A68,A75,XBOOLE_0:def 10; then A81:not (mbcde in {{}}) by TARSKI:def 1; mbcd<>{} by A62,A68,A75,XBOOLE_0:def 10; then A82:not (mbcd in {{}}) by TARSKI:def 1; mbc<>{} by A62,A68,A75,XBOOLE_0:def 10; then A83:not (mbc in {{}}) by TARSKI:def 1; mbc in INTERSECTION(B,C) by A64,SETFAM_1:def 5; then mbc in INTERSECTION(B,C) \ {{}} by A83,XBOOLE_0:def 4; then mbc in B '/\' C by PARTIT1:def 4; then mbcd in INTERSECTION(B '/\' C,D) by A64,SETFAM_1:def 5; then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A82,XBOOLE_0:def 4; then mbcd in B '/\' C '/\' D by PARTIT1:def 4; then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A64,SETFAM_1:def 5; then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A81,XBOOLE_0:def 4 ; then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A64,SETFAM_1:def 5 ; then mbcdef in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A80,XBOOLE_0:def 4; then mbcdef in (B '/\' C '/\' D '/\' E '/\' F) by PARTIT1:def 4; then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) by A64,SETFAM_1:def 5; then mbcdefj in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F,J) \ {{}} by A79,XBOOLE_0:def 4; then mbcdefj in (B '/\' C '/\' D '/\' E '/\' F '/\' J) by PARTIT1:def 4; then mbcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) by A64,SETFAM_1:def 5; then mbcdefjm in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J,M) \ { {}} by A78,XBOOLE_0:def 4; then mbcdefjm in (B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) by A64,A77,SETFAM_1:def 5; then x in INTERSECTION(B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M,N) \ { {}} by A67,XBOOLE_0:def 4; hence thesis by PARTIT1:def 4; end; hence thesis by A2,A14,XBOOLE_0:def 10; end; theorem Th36: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B} \/ {C,D,E,F,J,M,N} by Th28 .={B,A,C,D,E,F,J,M,N} by Th28; hence thesis by Th35; end; theorem Th37: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C} \/ {D,E,F,J,M,N} by Th29 .={A} \/ {B,C} \/ {D,E,F,J,M,N} by ENUMSET1:42 .={A,C,B} \/ {D,E,F,J,M,N} by ENUMSET1:42 .={A,C,B,D,E,F,J,M,N} by Th29; hence thesis by Th36; end; theorem Th38: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B} \/ {C,D,E,F,J,M,N} by Th28 .={A,B} \/ ({C,D} \/ {E,F,J,M,N}) by ENUMSET1:57 .={A,B} \/ {D,C,E,F,J,M,N} by ENUMSET1:57 .={A,B,D,C,E,F,J,M,N} by Th28; hence thesis by Th37; end; theorem Th39: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C} \/ {D,E,F,J,M,N} by Th29 .={A,B,C} \/ ({D,E} \/ {F,J,M,N}) by ENUMSET1:52 .={A,B,C} \/ ({E,D,F,J,M,N}) by ENUMSET1:52 .={A,B,C,E,D,F,J,M,N} by Th29; hence thesis by Th38; end; theorem Th40: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E '/\' J '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C,D} \/ {E,F,J,M,N} by Lm3 .={A,B,C,D} \/ ({E,F} \/ {J,M,N}) by ENUMSET1:48 .={A,B,C,D} \/ ({F,E,J,M,N}) by ENUMSET1:48 .={A,B,C,D,F,E,J,M,N} by Lm3; hence thesis by Th39; end; theorem Th41: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(J,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' M '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E} \/ {F,J,M,N} by Th31 .={A,B,C,D,E} \/ ({J,F} \/ {M,N}) by ENUMSET1:45 .={A,B,C,D,E} \/ ({J,F,M,N}) by ENUMSET1:45 .={A,B,C,D,E,J,F,M,N} by Th31; hence thesis by Th40; end; theorem Th42: for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(M,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' N proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E,F} \/ {J,M,N} by Th32 .={A,B,C,D,E,F} \/ ({J,M} \/ {N}) by ENUMSET1:43 .={A,B,C,D,E,F} \/ {M,J,N} by ENUMSET1:43 .={A,B,C,D,E,F,M,J,N} by Th32; hence thesis by Th41; end; theorem for G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y st G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds CompF(N,G) = A '/\' B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; {A,B,C,D,E,F,J,M,N} ={A,B,C,D,E,F,J} \/ {M,N} by Th33 .={A,B,C,D,E,F,J,N,M} by Th33; hence thesis by Th42; end; theorem Th44: for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds h.A = A' & h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' & h.J = J' & h.M = M' & h.N = N' proof let A,B,C,D,E,F,J,M,N be set; let h be Function; let A',B',C',D',E',F',J',M',N' be set; assume A1: A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A'); A2: dom (A .--> A') = {A} by CQC_LANG:5; A3: h.A = A' proof A in dom (A .--> A') by A2,TARSKI:def 1; then h.A = (A .--> A').A by A1,FUNCT_4:14; hence thesis by CQC_LANG:6; end; A4: h.B = B' proof not B in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).B by A1,FUNCT_4:12 .= B' by A1,Th21; hence thesis; end; A5: h.C = C' proof not C in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).C by A1,FUNCT_4:12; hence thesis by A1,Th21; end; A6: h.D = D' proof not D in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).D by A1,FUNCT_4:12 .= D' by A1,Th21; hence thesis; end; A7: h.E = E' proof not E in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).E by A1,FUNCT_4:12 .= E' by A1,Th21; hence thesis; end; A8: h.F = F' proof not F in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).F by A1,FUNCT_4:12 .= F' by A1,Th21; hence thesis; end; A9: h.J = J' proof not J in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.J=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).J by A1,FUNCT_4:12 .= J' by A1,Th21; hence thesis; end; A10: h.M = M' proof not M in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.M=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).M by A1,FUNCT_4:12 .= M' by A1,BVFUNC14:15; hence thesis; end; h.N = N' proof not N in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.N=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')).N by A1,FUNCT_4:12 .= N' by YELLOW14:3; hence thesis; end; hence thesis by A3,A4,A5,A6,A7,A8,A9,A10; end; theorem Th45: for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds dom h = {A,B,C,D,E,F,J,M,N} proof let A,B,C,D,E,F,J,M,N be set; let h be Function; let A',B',C',D',E',F',J',M',N' be set; assume A1: h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A'); A2: dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N')) = {N,B,C,D,E,F,J,M} by Th22 .= {N} \/ {B,C,D,E,F,J,M} by ENUMSET1:62 .= {B,C,D,E,F,J,M,N} by ENUMSET1:68; dom (A .--> A') = {A} by CQC_LANG:5; then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +*(A .--> A')) = {B,C,D,E,F,J,M,N} \/ {A} by A2,FUNCT_4:def 1 .= {A,B,C,D,E,F,J,M,N} by Th27; hence thesis by A1; end; theorem Th46: for A,B,C,D,E,F,J,M,N being set, h being Function, A',B',C',D',E',F',J',M',N' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} proof let A,B,C,D,E,F,J,M,N be set; let h be Function; let A',B',C',D',E',F',J',M',N' be set; assume h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (J .--> J') +* (M .--> M') +* (N .--> N') +* (A .--> A'); then A1: dom h = {A,B,C,D,E,F,J,M,N} by Th45; then A2: A in dom h by Lm2; A3: B in dom h by A1,Lm2; A4: C in dom h by A1,Lm2; A5: D in dom h by A1,Lm2; A6: E in dom h by A1,Lm2; A7: F in dom h by A1,Lm2; A8: J in dom h by A1,Lm2; A9: M in dom h by A1,Lm2; A10: N in dom h by A1,Lm2; A11:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} proof let t be set; assume t in rng h; then consider x1 being set such that A12: x1 in dom h & t = h.x1 by FUNCT_1:def 5; now per cases by A1,A12,Lm2; case x1=A; hence thesis by A12,Lm2; case x1=B; hence thesis by A12,Lm2; case x1=C; hence thesis by A12,Lm2; case x1=D; hence thesis by A12,Lm2; case x1=E; hence thesis by A12,Lm2; case x1=F; hence thesis by A12,Lm2; case x1=J; hence thesis by A12,Lm2; case x1=M; hence thesis by A12,Lm2; case x1=N; hence thesis by A12,Lm2; end; hence thesis; end; {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} c= rng h proof let t be set; assume A13:t in {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N}; now per cases by A13,Lm2; case t=h.A; hence thesis by A2,FUNCT_1:def 5; case t=h.B; hence thesis by A3,FUNCT_1:def 5; case t=h.C; hence thesis by A4,FUNCT_1:def 5; case t=h.D; hence thesis by A5,FUNCT_1:def 5; case t=h.E; hence thesis by A6,FUNCT_1:def 5; case t=h.F; hence thesis by A7,FUNCT_1:def 5; case t=h.J; hence thesis by A8,FUNCT_1:def 5; case t=h.M; hence thesis by A9,FUNCT_1:def 5; case t=h.N; hence thesis by A10,FUNCT_1:def 5; end; hence thesis; end; hence thesis by A11,XBOOLE_0:def 10; end; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y , z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) /\ EqClass(z,A) <> {} proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; let z,u be Element of Y; let h be Function; assume that A1:G is independent and A2: G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N; set GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N); set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (M .--> EqClass(u,M)) +* (N .--> EqClass(u,N)) +* (A .--> EqClass(z,A)); A3: dom h = G by A2,Th45; A4: h.A = EqClass(z,A) by A2,Th44; A5: h.B = EqClass(u,B) by A2,Th44; A6: h.C = EqClass(u,C) by A2,Th44; A7: h.D = EqClass(u,D) by A2,Th44; A8: h.E = EqClass(u,E) by A2,Th44; A9: h.F = EqClass(u,F) by A2,Th44; A10: h.J = EqClass(u,J) by A2,Th44; A11: h.M = EqClass(u,M) by A2,Th44; A12: h.N = EqClass(u,N) by A2,Th44; A13: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M or d=N by A2,Lm2; hence thesis by A4,A5,A6,A7,A8,A9,A10,A11,A12; end; A in dom h by A2,A3,Lm2; then A14: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A3,Lm2; then A15: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A3,Lm2; then A16: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A3,Lm2; then A17: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A3,Lm2; then A18: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A3,Lm2; then A19: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A3,Lm2; then A20: h.J in rng h by FUNCT_1:def 5; M in dom h by A2,A3,Lm2; then A21: h.M in rng h by FUNCT_1:def 5; N in dom h by A2,A3,Lm2; then A22: h.N in rng h by FUNCT_1:def 5; A23:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by Th46; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J or t=h.M or t=h.N by A23,Lm2; hence thesis by A4,A5,A6,A7,A8,A9,A10,A11,A12; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A24: Intersect FF = meet (rng h) by A14,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A3,A13,BVFUNC_2:def 5; then consider m being set such that A25: m in Intersect FF by XBOOLE_0:def 1; A26: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) & m in EqClass(u,M) & m in EqClass(u,N) by A4,A5,A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A17,A18,A19,A20,A21,A22,A24, A25,SETFAM_1:def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = (EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = ((((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then A27: GG /\ EqClass(z,A) = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u, D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A26,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A26,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A26,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A26,XBOOLE_0:def 3; then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u, E) /\ EqClass(u,F) /\ EqClass(u,J) by A26,XBOOLE_0:def 3; then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u, E) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) by A26,XBOOLE_0:def 3; then m in ((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u, E) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by A26,XBOOLE_0:def 3; hence thesis by A26,A27,XBOOLE_0:def 3; end; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C,D,E,F,J,M,N being a_partition of Y, z,u being Element of Y st G is independent & G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)) proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F,J,M,N be a_partition of Y; let z,u be Element of Y; assume that A1:G is independent and A2: G={A,B,C,D,E,F,J,M,N} & A<>B & A<>C & A<>D & A<>E & A<>F & A<>J & A<>M & A<>N & B<>C & B<>D & B<>E & B<>F & B<>J & B<>M & B<>N & C<>D & C<>E & C<>F & C<>J & C<>M & C<>N & D<>E & D<>F & D<>J & D<>M & D<>N & E<>F & E<>J & E<>M & E<>N & F<>J & F<>M & F<>N & J<>M & J<>N & M<>N & EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)= EqClass(u,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N); A3:CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N by A2,Th35; A4:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N by A2,Th36; reconsider HH=EqClass(z,CompF(B,G)) as set; reconsider I=EqClass(z,A) as set; set GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F '/\' J '/\' M '/\' N)); set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (J .--> EqClass(u,J)) +* (M .--> EqClass(u,M)) +* (N .--> EqClass(u,N)) +* (A .--> EqClass(z,A)); A5: dom h = G by A2,Th45; A6: h.A = EqClass(z,A) by A2,Th44; A7: h.B = EqClass(u,B) by A2,Th44; A8: h.C = EqClass(u,C) by A2,Th44; A9: h.D = EqClass(u,D) by A2,Th44; A10: h.E = EqClass(u,E) by A2,Th44; A11: h.F = EqClass(u,F) by A2,Th44; A12: h.J = EqClass(u,J) by A2,Th44; A13: h.M = EqClass(u,M) by A2,Th44; A14: h.N = EqClass(u,N) by A2,Th44; A15: for d being set st d in G holds h.d in d proof let d be set; assume d in G; then d=A or d=B or d=C or d=D or d=E or d=F or d=J or d=M or d=N by A2,Lm2; hence thesis by A6,A7,A8,A9,A10,A11,A12,A13,A14; end; A in dom h by A2,A5,Lm2; then A16: h.A in rng h by FUNCT_1:def 5; B in dom h by A2,A5,Lm2; then A17: h.B in rng h by FUNCT_1:def 5; C in dom h by A2,A5,Lm2; then A18: h.C in rng h by FUNCT_1:def 5; D in dom h by A2,A5,Lm2; then A19: h.D in rng h by FUNCT_1:def 5; E in dom h by A2,A5,Lm2; then A20: h.E in rng h by FUNCT_1:def 5; F in dom h by A2,A5,Lm2; then A21: h.F in rng h by FUNCT_1:def 5; J in dom h by A2,A5,Lm2; then A22: h.J in rng h by FUNCT_1:def 5; M in dom h by A2,A5,Lm2; then A23: h.M in rng h by FUNCT_1:def 5; N in dom h by A2,A5,Lm2; then A24: h.N in rng h by FUNCT_1:def 5; A25:rng h = {h.A,h.B,h.C,h.D,h.E,h.F,h.J,h.M,h.N} by Th46; rng h c= bool Y proof let t be set; assume t in rng h; then t=h.A or t=h.B or t=h.C or t=h.D or t=h.E or t=h.F or t=h.J or t=h.M or t=h.N by A25,Lm2; hence thesis by A6,A7,A8,A9,A10,A11,A12,A13,A14; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A26: Intersect FF = meet (rng h) by A16,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A5,A15,BVFUNC_2:def 5; then consider m being set such that A27: m in Intersect FF by XBOOLE_0:def 1; A28: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) & m in EqClass(u,J) & m in EqClass(u,M) & m in EqClass(u,N) by A6,A7,A8,A9,A10,A11,A12,A13,A14,A16,A17,A18,A19,A20,A21,A22,A23,A24,A26, A27,SETFAM_1:def 1 ; GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F '/\' J) /\ EqClass(u,M ) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E '/\' F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) /\ EqClass(u ,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = (((EqClass(u,B '/\' C '/\' D)) /\ EqClass(u,E)) /\ EqClass(u,F )) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then GG = ((EqClass(u,B '/\' C) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J) /\ EqClass(u,M) /\ EqClass(u,N) by BVFUNC14:1; then A29: GG /\ I = ((((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(u,J)) /\ EqClass(u,M) /\ EqClass(u,N)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A28,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A28,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A28,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A28,XBOOLE_0:def 3; then m in (((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u ,E)) /\ EqClass(u,F) /\ EqClass(u,J) by A28,XBOOLE_0:def 3; then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M) by A28,XBOOLE_0:def 3; then m in ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F) /\ EqClass(u,J)) /\ EqClass(u,M) /\ EqClass(u,N) by A28,XBOOLE_0:def 3; then A30:GG /\ I <> {} by A28,A29,XBOOLE_0:def 3; then consider p being set such that A31: p in GG /\ I by XBOOLE_0:def 1; GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) & not (GG /\ I in {{}}) by A30,SETFAM_1:def 5,TARSKI:def 1; then GG /\ I in INTERSECTION(A,B '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) \ {{}} by XBOOLE_0:def 4; then GG /\ I in (A '/\' (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) by PARTIT1:def 4; then reconsider p as Element of Y by A31; set K=EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N); A32:p in K & K in C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N by T_1TOPSP:def 1; p in GG & p in I by A31,XBOOLE_0:def 3; then A33:p in I /\ K by A32,XBOOLE_0:def 3; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) & not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1; then A34: I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) \ {{}} by XBOOLE_0:def 4; set L=EqClass(z,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N); GG=EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J '/\' M '/\' N ) by PARTIT1:16; then GG=EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J '/\' M '/\' N) by PARTIT1:16; then GG=EqClass(u,(B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J '/\' M '/\' N) by PARTIT1:16; then GG=EqClass(u,B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M '/\' N) by PARTIT1:16; then GG= EqClass(u,B '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) by PARTIT1:16; then GG=EqClass(u,B '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N)) by PARTIT1:16; then A35: GG c= L by A2,BVFUNC11:3; A36: p in GG by A31,XBOOLE_0:def 3; p in EqClass(p,C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) by T_1TOPSP:def 1; then K meets L by A35,A36,XBOOLE_0:3; then K=L by T_1TOPSP:9; then A37:z in K by T_1TOPSP:def 1; z in I by T_1TOPSP:def 1; then A38:z in I /\ K by A37,XBOOLE_0:def 3; z in HH by T_1TOPSP:def 1; then A39:I /\ K meets HH by A38,XBOOLE_0:3; A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N) = A '/\' (C '/\' D '/\' E '/\' F '/\' J '/\' M) '/\' N by PARTIT1:16 .= A '/\' (C '/\' D '/\' E '/\' F '/\' J) '/\' M '/\' N by PARTIT1:16 .= A '/\' (C '/\' D '/\' E '/\' F) '/\' J '/\' M '/\' N by PARTIT1:16 .= A '/\' (C '/\' D '/\' E) '/\' F '/\' J '/\' M '/\' N by PARTIT1:16 .= A '/\' (C '/\' D) '/\' E '/\' F '/\' J '/\' M '/\' N by PARTIT1:16 .= A '/\' C '/\' D '/\' E '/\' F '/\' J '/\' M '/\' N by PARTIT1:16; then I /\ K in CompF(B,G) by A4,A34,PARTIT1:def 4; then p in HH by A33,A39,EQREL_1:def 6; hence thesis by A3,A36,XBOOLE_0:3; end; theorem x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 or x=x9 implies x in { x1,x2,x3,x4,x5,x6,x7,x8,x9 } by Lm2;