environ vocabulary SEQ_1, PARTFUN1, FCONT_1, RCOMP_1, FUNCT_1, FDIFF_1, PRE_TOPC, RELAT_1, COMPTS_1, ARYTM, SEQ_4, LATTICES, SEQ_2, PARTFUN2, ARYTM_3, BOOLE, ARYTM_1, SEQM_3, ORDINAL2, RFUNCT_2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, RELSET_1, SEQ_1, SEQ_2, SEQM_3, SEQ_4, PARTFUN1, PARTFUN2, RFUNCT_2, RCOMP_1, FCONT_1, FDIFF_1; constructors REAL_1, SEQ_2, SEQM_3, SEQ_4, PARTFUN2, RFUNCT_2, RCOMP_1, FCONT_1, FDIFF_1, PARTFUN1, MEMBERED, XBOOLE_0; clusters RCOMP_1, FDIFF_1, RELSET_1, XREAL_0, SEQ_1, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve y for set; reserve g,r,s,p,t,x,x0,x1,x2 for Real; reserve n,n1 for Nat; reserve s1,s2,s3 for Real_Sequence; reserve f,f1,f2,f3 for PartFunc of REAL,REAL; theorem :: ROLLE:1 for p,g st p<g for f st f is_continuous_on [.p,g.] & f.p=f.g & f is_differentiable_on ].p,g.[ ex x0 st x0 in ].p,g.[ & diff(f,x0)=0; theorem :: ROLLE:2 for x,t st 0<t for f st f is_continuous_on [.x,x+t.] & f.x=f.(x+t) & f is_differentiable_on ].x,x+t.[ ex s st 0<s & s<1 & diff(f,x+s*t)=0; theorem :: ROLLE:3 for p,g st p<g for f st f is_continuous_on [.p,g.] & f is_differentiable_on ].p,g.[ ex x0 st x0 in ].p,g.[ & diff(f,x0)=(f.g-f.p)/(g-p); theorem :: ROLLE:4 for x,t st 0<t for f st f is_continuous_on [.x,x+t.] & f is_differentiable_on ].x,x+t.[ ex s st 0<s & s<1 & f.(x+t) = f.x + t*diff(f,x+s*t); theorem :: ROLLE:5 for p,g st p<g for f1,f2 st f1 is_continuous_on [.p,g.] & f1 is_differentiable_on ].p,g.[ & f2 is_continuous_on [.p,g.] & f2 is_differentiable_on ].p,g.[ ex x0 st x0 in ].p,g.[ & (f1.g-f1.p)*diff(f2,x0)=(f2.g-f2.p)*diff(f1,x0); theorem :: ROLLE:6 for x,t st 0<t for f1,f2 st f1 is_continuous_on [.x,x+t.] & f1 is_differentiable_on ].x,x+t.[ & f2 is_continuous_on [.x,x+t.] & f2 is_differentiable_on ].x,x+t.[ & (for x1 st x1 in ].x,x+t.[ holds diff(f2,x1)<>0) ex s st 0<s & s<1 & (f1.(x+t)-f1.x)/(f2.(x+t)-f2.x) = diff(f1,x+s*t)/diff(f2,x+s*t); theorem :: ROLLE:7 for p,g st p<g for f st f is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds diff(f,x) = 0) holds f is_constant_on ].p,g.[; theorem :: ROLLE:8 for p,g st p<g for f1,f2 st f1 is_differentiable_on ].p,g.[ & f2 is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds diff(f1,x) = diff(f2,x)) holds f1-f2 is_constant_on ].p,g.[ & ex r st for x st x in ].p,g.[ holds f1.x = f2.x+r; theorem :: ROLLE:9 for p,g st p<g for f st f is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds 0<diff(f,x)) holds f is_increasing_on ].p,g.[; theorem :: ROLLE:10 for p,g st p<g for f st f is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds diff(f,x)<0) holds f is_decreasing_on ].p,g.[; theorem :: ROLLE:11 for p,g st p<g for f st f is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds 0<=diff(f,x)) holds f is_non_decreasing_on ].p,g.[; theorem :: ROLLE:12 for p,g st p<g for f st f is_differentiable_on ].p,g.[ & (for x st x in ].p,g.[ holds diff(f,x)<=0) holds f is_non_increasing_on ].p,g.[;