Journal of Formalized Mathematics
Volume 16, 2004
University of Bialystok
Copyright (c) 2004
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Yasumasa Suzuki
- Received January 6, 2004
- MML identifier: RSSPACE4
- [
Mizar article,
MML identifier index
]
environ
vocabulary PRE_TOPC, NORMSP_1, RLVECT_1, FUNCT_1, ARYTM, ARYTM_1, ARYTM_3,
RELAT_1, ABSVALUE, ORDINAL2, LATTICES, RLSUB_1, SEQ_1, FUNCT_2, FUNCOP_1,
FUNCSDOM, SEQ_2, SEQM_3, BHSP_3, RSSPACE, RSSPACE3, LOPBAN_1, RSSPACE4;
notation TARSKI, XBOOLE_0, ZFMISC_1, ENUMSET1, SUBSET_1, MCART_1, RELSET_1,
RELAT_1, PRE_TOPC, DOMAIN_1, FUNCOP_1, BINOP_1, STRUCT_0, XCMPLX_0,
XREAL_0, RAT_1, INT_1, ORDINAL1, ORDINAL2, NUMBERS, MEMBERED, REAL_1,
NAT_1, FUNCT_1, FUNCT_2, FUNCT_3, INTEGRA1, INTEGRA2, PSCOMP_1, RLVECT_1,
VECTSP_1, FRAENKEL, ABSVALUE, NORMSP_1, SEQ_1, SEQ_2, SEQM_3, SERIES_1,
SEQ_4, RLSUB_1, PARTFUN1, RFUNCT_2, RSSPACE, RSSPACE3, LOPBAN_1;
constructors FUNCT_3, BINOP_1, ARYTM_0, REAL_1, INTEGRA1, INTEGRA2, XREAL_0,
NAT_1, ABSVALUE, SQUARE_1, FUNCT_2, XCMPLX_0, SUBSET_1, MEMBERED,
RFUNCT_2, PSCOMP_1, DOMAIN_1, SEQ_1, SEQ_2, SEQM_3, SERIES_1, SEQ_4,
SUPINF_2, METRIC_1, FUNCOP_1, FUNCSDOM, RAT_1, INT_1, PARTFUN1, RLVECT_1,
VECTSP_1, FRAENKEL, RLSUB_1, NORMSP_1, BHSP_2, RSSPACE, RSSPACE3,
LOPBAN_1;
clusters SUBSET_1, RELSET_1, FINSEQ_1, STRUCT_0, ARYTM_3, RELAT_1, REAL_1,
NUMBERS, ORDINAL2, XBOOLE_0, FUNCT_1, FUNCT_2, SEQ_1, FUNCOP_1, FUNCSDOM,
RLVECT_1, NORMSP_1, XREAL_0, MEMBERED, VECTSP_1, FRAENKEL, INT_1,
RSSPACE, RSSPACE3, BHSP_1;
requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM;
begin
definition
func the_set_of_BoundedRealSequences -> Subset of
Linear_Space_of_RealSequences means
:: RSSPACE4:def 1
for x being set holds x in it iff
(x in the_set_of_RealSequences & seq_id x is bounded);
end;
definition
cluster the_set_of_BoundedRealSequences -> non empty;
cluster the_set_of_BoundedRealSequences -> lineary-closed;
end;
theorem :: RSSPACE4:1
RLSStruct (# the_set_of_BoundedRealSequences,
Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences) #)
is Subspace of Linear_Space_of_RealSequences;
definition
cluster RLSStruct (# the_set_of_BoundedRealSequences,
Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences) #)
-> Abelian add-associative right_zeroed right_complementable
RealLinearSpace-like;
end;
definition
func linfty_norm ->
Function of the_set_of_BoundedRealSequences, REAL means
:: RSSPACE4:def 2
for x be set st x in the_set_of_BoundedRealSequences holds
it.x = sup rng abs seq_id x;
end;
theorem :: RSSPACE4:2
for rseq be Real_Sequence holds
( rseq is bounded & sup rng abs rseq = 0 ) iff
for n be Nat holds rseq.n = 0;
definition
cluster NORMSTR (# the_set_of_BoundedRealSequences,
Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
linfty_norm #) -> Abelian add-associative right_zeroed
right_complementable RealLinearSpace-like;
end;
definition
func linfty_Space -> non empty NORMSTR equals
:: RSSPACE4:def 3
NORMSTR (# the_set_of_BoundedRealSequences,
Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences),
linfty_norm #);
end;
theorem :: RSSPACE4:3
the carrier of linfty_Space = the_set_of_BoundedRealSequences &
( for x be set holds
x is VECTOR of linfty_Space
iff x is Real_Sequence & seq_id x is bounded ) &
0.linfty_Space = Zeroseq &
( for u be VECTOR of linfty_Space holds u = seq_id u ) &
( for u,v be VECTOR of linfty_Space holds u+v =seq_id(u)+seq_id(v) ) &
( for r be Real for u be VECTOR of linfty_Space holds r*u =r(#)seq_id(u) ) &
( for u be VECTOR of linfty_Space holds
-u = -seq_id u & seq_id(-u) = -seq_id u ) &
( for u,v be VECTOR of linfty_Space holds u-v =seq_id(u)-seq_id(v) ) &
( for v be VECTOR of linfty_Space holds seq_id v is bounded ) &
( for v be VECTOR of linfty_Space holds ||.v.|| = sup rng abs seq_id v );
theorem :: RSSPACE4:4
for x, y being Point of linfty_Space, a be Real holds
( ||.x.|| = 0 iff x = 0.linfty_Space ) &
0 <= ||.x.|| &
||.x+y.|| <= ||.x.|| + ||.y.|| &
||. a*x .|| = abs(a) * ||.x.||;
definition
cluster linfty_Space -> RealNormSpace-like RealLinearSpace-like
Abelian add-associative right_zeroed right_complementable;
end;
reserve NRM for non empty RealNormSpace;
reserve seq for sequence of NRM;
theorem :: RSSPACE4:5
for vseq be sequence of linfty_Space st vseq is Cauchy_sequence_by_Norm
holds vseq is convergent;
begin
definition
let X be non empty set;
let Y be RealNormSpace;
let IT be Function of X, the carrier of Y;
attr IT is bounded means
:: RSSPACE4:def 4
ex K being Real st 0 <= K &
for x being Element of X holds
||. IT.x .|| <= K;
end;
theorem :: RSSPACE4:6
for X be non empty set
for Y be RealNormSpace holds
for f be Function of X,the carrier of Y
st (for x be Element of X holds f.x=0.Y)
holds f is bounded;
definition
let X be non empty set;
let Y be RealNormSpace;
cluster bounded Function of X,the carrier of Y;
end;
definition
let X be non empty set;
let Y be RealNormSpace;
func BoundedFunctions(X,Y) ->
Subset of RealVectSpace(X,Y) means
:: RSSPACE4:def 5
for x being set holds x in it
iff
x is bounded Function of X,the carrier of Y;
end;
definition
let X be non empty set;
let Y be RealNormSpace;
cluster BoundedFunctions(X,Y) -> non empty;
end;
theorem :: RSSPACE4:7
for X be non empty set for Y be RealNormSpace holds
BoundedFunctions(X,Y) is lineary-closed;
theorem :: RSSPACE4:8
for X be non empty set for Y be RealNormSpace holds
RLSStruct (# BoundedFunctions(X,Y),
Zero_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Add_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Mult_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)) #)
is Subspace of RealVectSpace(X,Y);
definition
let X be non empty set;
let Y be RealNormSpace;
cluster RLSStruct (# BoundedFunctions(X,Y),
Zero_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Add_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Mult_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)) #)
-> Abelian add-associative right_zeroed right_complementable
RealLinearSpace-like;
end;
theorem :: RSSPACE4:9
for X be non empty set for Y be RealNormSpace holds
RLSStruct (# BoundedFunctions(X,Y),
Zero_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Add_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Mult_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)) #)
is RealLinearSpace;
definition
let X be non empty set;
let Y be RealNormSpace;
func R_VectorSpace_of_BoundedFunctions(X,Y) -> RealLinearSpace equals
:: RSSPACE4:def 6
RLSStruct (# BoundedFunctions(X,Y),
Zero_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Add_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Mult_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)) #);
end;
definition
let X be non empty set; let Y be RealNormSpace;
cluster R_VectorSpace_of_BoundedFunctions(X,Y) -> strict;
end;
theorem :: RSSPACE4:10
for X be non empty set for Y be RealNormSpace
for f,g,h be VECTOR of R_VectorSpace_of_BoundedFunctions(X,Y)
for f',g',h' be bounded Function of X,the carrier of Y
st f'=f & g'=g & h'=h holds
(h = f+g iff (for x be Element of X holds (h'.x = f'.x + g'.x)) );
theorem :: RSSPACE4:11
for X be non empty set for Y be RealNormSpace
for f,h be VECTOR of R_VectorSpace_of_BoundedFunctions(X,Y)
for f',h' be bounded Function of X,the carrier of Y
st f'=f & h'=h
for a be Real holds
h = a*f iff for x be Element of X holds h'.x = a*f'.x;
theorem :: RSSPACE4:12
for X be non empty set for Y be RealNormSpace holds
0.R_VectorSpace_of_BoundedFunctions(X,Y)
=(X -->0.Y);
definition
let X be non empty set; let Y be RealNormSpace;
let f be set such that
f in BoundedFunctions(X,Y);
func modetrans(f,X,Y)
-> bounded Function of X,the carrier of Y equals
:: RSSPACE4:def 7
f;
end;
definition
let X be non empty set; let Y be RealNormSpace;
let u be Function of X,the carrier of Y;
func PreNorms(u) -> non empty Subset of REAL equals
:: RSSPACE4:def 8
{||.u.t.|| where t is Element of X : not contradiction };
end;
theorem :: RSSPACE4:13
for X be non empty set for Y be RealNormSpace
for g be bounded Function of X,the carrier of Y
holds PreNorms(g) is non empty bounded_above;
theorem :: RSSPACE4:14
for X be non empty set for Y be RealNormSpace
for g be Function of X,the carrier of Y
holds g is bounded iff PreNorms(g) is bounded_above;
theorem :: RSSPACE4:15
for X be non empty set for Y be RealNormSpace
ex NORM be Function of BoundedFunctions(X,Y),REAL st
for f be set st f in BoundedFunctions(X,Y) holds
NORM.f = sup PreNorms(modetrans(f,X,Y));
definition
let X be non empty set; let Y be RealNormSpace;
func BoundedFunctionsNorm(X,Y)
-> Function of BoundedFunctions(X,Y), REAL means
:: RSSPACE4:def 9
for x be set st x in BoundedFunctions(X,Y) holds
it.x = sup PreNorms(modetrans(x,X,Y));
end;
theorem :: RSSPACE4:16
for X be non empty set for Y be RealNormSpace
for f be bounded Function of X,the carrier of Y holds modetrans(f,X,Y)=f;
theorem :: RSSPACE4:17
for X be non empty set for Y be RealNormSpace
for f be bounded Function of X,the carrier of Y holds
BoundedFunctionsNorm(X,Y).f = sup PreNorms(f);
definition let X be non empty set;let Y be RealNormSpace;
func R_NormSpace_of_BoundedFunctions(X,Y) -> non empty NORMSTR equals
:: RSSPACE4:def 10
NORMSTR (# BoundedFunctions(X,Y),
Zero_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Add_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
Mult_(BoundedFunctions(X,Y),
RealVectSpace(X,Y)),
BoundedFunctionsNorm(X,Y) #);
end;
theorem :: RSSPACE4:18
for X be non empty set for Y be RealNormSpace
holds (X --> 0.Y) =
0.R_NormSpace_of_BoundedFunctions(X,Y);
theorem :: RSSPACE4:19
for X be non empty set for Y be RealNormSpace
for f being Point of
R_NormSpace_of_BoundedFunctions(X,Y)
for g be bounded Function of X,the carrier of Y st g=f holds
for t be Element of X holds ||.g.t.|| <= ||.f.||;
theorem :: RSSPACE4:20
for X be non empty set for Y be RealNormSpace
for f being Point of
R_NormSpace_of_BoundedFunctions(X,Y)
holds 0 <= ||.f.||;
theorem :: RSSPACE4:21
for X be non empty set for Y be RealNormSpace
for f being Point of
R_NormSpace_of_BoundedFunctions(X,Y)
st f = 0.R_NormSpace_of_BoundedFunctions(X,Y)
holds 0 = ||.f.||;
theorem :: RSSPACE4:22
for X be non empty set for Y be RealNormSpace
for f,g,h be Point of R_NormSpace_of_BoundedFunctions(X,Y)
for f',g',h' be bounded Function of X,the carrier of Y
st f'=f & g'=g & h'=h holds
(h = f+g iff
(for x be Element of X holds (h'.x = f'.x + g'.x)) );
theorem :: RSSPACE4:23
for X be non empty set for Y be RealNormSpace
for f,h be Point of R_NormSpace_of_BoundedFunctions(X,Y)
for f',h' be bounded Function of X,the carrier of Y st f'=f & h'=h
for a be Real holds
h = a*f iff for x be Element of X holds h'.x = a*f'.x;
theorem :: RSSPACE4:24
for X be non empty set
for Y be RealNormSpace
for f, g being Point of
R_NormSpace_of_BoundedFunctions(X,Y)
for a be Real holds
( ||.f.|| = 0 iff
f = 0.R_NormSpace_of_BoundedFunctions(X,Y) ) &
||.a*f.|| = abs(a) * ||.f.|| &
||.f+g.|| <= ||.f.|| + ||.g.||;
theorem :: RSSPACE4:25
for X be non empty set for Y be RealNormSpace holds
R_NormSpace_of_BoundedFunctions(X,Y) is RealNormSpace-like;
theorem :: RSSPACE4:26
for X be non empty set for Y be RealNormSpace holds
R_NormSpace_of_BoundedFunctions(X,Y) is RealNormSpace;
definition
let X be non empty set; let Y be RealNormSpace;
cluster R_NormSpace_of_BoundedFunctions(X,Y) ->
RealNormSpace-like RealLinearSpace-like
Abelian add-associative right_zeroed right_complementable;
end;
theorem :: RSSPACE4:27
for X be non empty set for Y be RealNormSpace
for f,g,h be Point of R_NormSpace_of_BoundedFunctions(X,Y)
for f',g',h' be bounded Function of X,the carrier of Y
st f'=f & g'=g & h'=h holds
(h = f-g iff
(for x be Element of X holds (h'.x = f'.x - g'.x)) );
theorem :: RSSPACE4:28
for X be non empty set for Y be RealNormSpace st Y is complete
for seq be sequence of R_NormSpace_of_BoundedFunctions(X,Y)
st seq is Cauchy_sequence_by_Norm
holds seq is convergent;
theorem :: RSSPACE4:29
for X be non empty set
for Y be RealBanachSpace holds
R_NormSpace_of_BoundedFunctions(X,Y) is RealBanachSpace;
definition
let X be non empty set;
let Y be RealBanachSpace;
cluster R_NormSpace_of_BoundedFunctions (X,Y) -> complete;
end;
Back to top