environ vocabulary PRE_TOPC, NORMSP_1, RLVECT_1, FUNCT_1, ARYTM, ARYTM_1, ARYTM_3, RELAT_1, ABSVALUE, ORDINAL2, LATTICES, RLSUB_1, SEQ_1, FUNCT_2, FUNCOP_1, FUNCSDOM, SEQ_2, SEQM_3, BHSP_3, RSSPACE, RSSPACE3, LOPBAN_1, RSSPACE4; notation TARSKI, XBOOLE_0, ZFMISC_1, ENUMSET1, SUBSET_1, MCART_1, RELSET_1, RELAT_1, PRE_TOPC, DOMAIN_1, FUNCOP_1, BINOP_1, STRUCT_0, XCMPLX_0, XREAL_0, RAT_1, INT_1, ORDINAL1, ORDINAL2, NUMBERS, MEMBERED, REAL_1, NAT_1, FUNCT_1, FUNCT_2, FUNCT_3, INTEGRA1, INTEGRA2, PSCOMP_1, RLVECT_1, VECTSP_1, FRAENKEL, ABSVALUE, NORMSP_1, SEQ_1, SEQ_2, SEQM_3, SERIES_1, SEQ_4, RLSUB_1, PARTFUN1, RFUNCT_2, RSSPACE, RSSPACE3, LOPBAN_1; constructors FUNCT_3, BINOP_1, ARYTM_0, REAL_1, INTEGRA1, INTEGRA2, XREAL_0, NAT_1, ABSVALUE, SQUARE_1, FUNCT_2, XCMPLX_0, SUBSET_1, MEMBERED, RFUNCT_2, PSCOMP_1, DOMAIN_1, SEQ_1, SEQ_2, SEQM_3, SERIES_1, SEQ_4, SUPINF_2, METRIC_1, FUNCOP_1, FUNCSDOM, RAT_1, INT_1, PARTFUN1, RLVECT_1, VECTSP_1, FRAENKEL, RLSUB_1, NORMSP_1, BHSP_2, RSSPACE, RSSPACE3, LOPBAN_1; clusters SUBSET_1, RELSET_1, FINSEQ_1, STRUCT_0, ARYTM_3, RELAT_1, REAL_1, NUMBERS, ORDINAL2, XBOOLE_0, FUNCT_1, FUNCT_2, SEQ_1, FUNCOP_1, FUNCSDOM, RLVECT_1, NORMSP_1, XREAL_0, MEMBERED, VECTSP_1, FRAENKEL, INT_1, RSSPACE, RSSPACE3, BHSP_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin definition func the_set_of_BoundedRealSequences -> Subset of Linear_Space_of_RealSequences means :: RSSPACE4:def 1 for x being set holds x in it iff (x in the_set_of_RealSequences & seq_id x is bounded); end; definition cluster the_set_of_BoundedRealSequences -> non empty; cluster the_set_of_BoundedRealSequences -> lineary-closed; end; theorem :: RSSPACE4:1 RLSStruct (# the_set_of_BoundedRealSequences, Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences) #) is Subspace of Linear_Space_of_RealSequences; definition cluster RLSStruct (# the_set_of_BoundedRealSequences, Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences) #) -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like; end; definition func linfty_norm -> Function of the_set_of_BoundedRealSequences, REAL means :: RSSPACE4:def 2 for x be set st x in the_set_of_BoundedRealSequences holds it.x = sup rng abs seq_id x; end; theorem :: RSSPACE4:2 for rseq be Real_Sequence holds ( rseq is bounded & sup rng abs rseq = 0 ) iff for n be Nat holds rseq.n = 0; definition cluster NORMSTR (# the_set_of_BoundedRealSequences, Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), linfty_norm #) -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like; end; definition func linfty_Space -> non empty NORMSTR equals :: RSSPACE4:def 3 NORMSTR (# the_set_of_BoundedRealSequences, Zero_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Add_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), Mult_(the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences), linfty_norm #); end; theorem :: RSSPACE4:3 the carrier of linfty_Space = the_set_of_BoundedRealSequences & ( for x be set holds x is VECTOR of linfty_Space iff x is Real_Sequence & seq_id x is bounded ) & 0.linfty_Space = Zeroseq & ( for u be VECTOR of linfty_Space holds u = seq_id u ) & ( for u,v be VECTOR of linfty_Space holds u+v =seq_id(u)+seq_id(v) ) & ( for r be Real for u be VECTOR of linfty_Space holds r*u =r(#)seq_id(u) ) & ( for u be VECTOR of linfty_Space holds -u = -seq_id u & seq_id(-u) = -seq_id u ) & ( for u,v be VECTOR of linfty_Space holds u-v =seq_id(u)-seq_id(v) ) & ( for v be VECTOR of linfty_Space holds seq_id v is bounded ) & ( for v be VECTOR of linfty_Space holds ||.v.|| = sup rng abs seq_id v ); theorem :: RSSPACE4:4 for x, y being Point of linfty_Space, a be Real holds ( ||.x.|| = 0 iff x = 0.linfty_Space ) & 0 <= ||.x.|| & ||.x+y.|| <= ||.x.|| + ||.y.|| & ||. a*x .|| = abs(a) * ||.x.||; definition cluster linfty_Space -> RealNormSpace-like RealLinearSpace-like Abelian add-associative right_zeroed right_complementable; end; reserve NRM for non empty RealNormSpace; reserve seq for sequence of NRM; theorem :: RSSPACE4:5 for vseq be sequence of linfty_Space st vseq is Cauchy_sequence_by_Norm holds vseq is convergent; begin definition let X be non empty set; let Y be RealNormSpace; let IT be Function of X, the carrier of Y; attr IT is bounded means :: RSSPACE4:def 4 ex K being Real st 0 <= K & for x being Element of X holds ||. IT.x .|| <= K; end; theorem :: RSSPACE4:6 for X be non empty set for Y be RealNormSpace holds for f be Function of X,the carrier of Y st (for x be Element of X holds f.x=0.Y) holds f is bounded; definition let X be non empty set; let Y be RealNormSpace; cluster bounded Function of X,the carrier of Y; end; definition let X be non empty set; let Y be RealNormSpace; func BoundedFunctions(X,Y) -> Subset of RealVectSpace(X,Y) means :: RSSPACE4:def 5 for x being set holds x in it iff x is bounded Function of X,the carrier of Y; end; definition let X be non empty set; let Y be RealNormSpace; cluster BoundedFunctions(X,Y) -> non empty; end; theorem :: RSSPACE4:7 for X be non empty set for Y be RealNormSpace holds BoundedFunctions(X,Y) is lineary-closed; theorem :: RSSPACE4:8 for X be non empty set for Y be RealNormSpace holds RLSStruct (# BoundedFunctions(X,Y), Zero_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Add_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Mult_(BoundedFunctions(X,Y), RealVectSpace(X,Y)) #) is Subspace of RealVectSpace(X,Y); definition let X be non empty set; let Y be RealNormSpace; cluster RLSStruct (# BoundedFunctions(X,Y), Zero_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Add_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Mult_(BoundedFunctions(X,Y), RealVectSpace(X,Y)) #) -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like; end; theorem :: RSSPACE4:9 for X be non empty set for Y be RealNormSpace holds RLSStruct (# BoundedFunctions(X,Y), Zero_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Add_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Mult_(BoundedFunctions(X,Y), RealVectSpace(X,Y)) #) is RealLinearSpace; definition let X be non empty set; let Y be RealNormSpace; func R_VectorSpace_of_BoundedFunctions(X,Y) -> RealLinearSpace equals :: RSSPACE4:def 6 RLSStruct (# BoundedFunctions(X,Y), Zero_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Add_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Mult_(BoundedFunctions(X,Y), RealVectSpace(X,Y)) #); end; definition let X be non empty set; let Y be RealNormSpace; cluster R_VectorSpace_of_BoundedFunctions(X,Y) -> strict; end; theorem :: RSSPACE4:10 for X be non empty set for Y be RealNormSpace for f,g,h be VECTOR of R_VectorSpace_of_BoundedFunctions(X,Y) for f',g',h' be bounded Function of X,the carrier of Y st f'=f & g'=g & h'=h holds (h = f+g iff (for x be Element of X holds (h'.x = f'.x + g'.x)) ); theorem :: RSSPACE4:11 for X be non empty set for Y be RealNormSpace for f,h be VECTOR of R_VectorSpace_of_BoundedFunctions(X,Y) for f',h' be bounded Function of X,the carrier of Y st f'=f & h'=h for a be Real holds h = a*f iff for x be Element of X holds h'.x = a*f'.x; theorem :: RSSPACE4:12 for X be non empty set for Y be RealNormSpace holds 0.R_VectorSpace_of_BoundedFunctions(X,Y) =(X -->0.Y); definition let X be non empty set; let Y be RealNormSpace; let f be set such that f in BoundedFunctions(X,Y); func modetrans(f,X,Y) -> bounded Function of X,the carrier of Y equals :: RSSPACE4:def 7 f; end; definition let X be non empty set; let Y be RealNormSpace; let u be Function of X,the carrier of Y; func PreNorms(u) -> non empty Subset of REAL equals :: RSSPACE4:def 8 {||.u.t.|| where t is Element of X : not contradiction }; end; theorem :: RSSPACE4:13 for X be non empty set for Y be RealNormSpace for g be bounded Function of X,the carrier of Y holds PreNorms(g) is non empty bounded_above; theorem :: RSSPACE4:14 for X be non empty set for Y be RealNormSpace for g be Function of X,the carrier of Y holds g is bounded iff PreNorms(g) is bounded_above; theorem :: RSSPACE4:15 for X be non empty set for Y be RealNormSpace ex NORM be Function of BoundedFunctions(X,Y),REAL st for f be set st f in BoundedFunctions(X,Y) holds NORM.f = sup PreNorms(modetrans(f,X,Y)); definition let X be non empty set; let Y be RealNormSpace; func BoundedFunctionsNorm(X,Y) -> Function of BoundedFunctions(X,Y), REAL means :: RSSPACE4:def 9 for x be set st x in BoundedFunctions(X,Y) holds it.x = sup PreNorms(modetrans(x,X,Y)); end; theorem :: RSSPACE4:16 for X be non empty set for Y be RealNormSpace for f be bounded Function of X,the carrier of Y holds modetrans(f,X,Y)=f; theorem :: RSSPACE4:17 for X be non empty set for Y be RealNormSpace for f be bounded Function of X,the carrier of Y holds BoundedFunctionsNorm(X,Y).f = sup PreNorms(f); definition let X be non empty set;let Y be RealNormSpace; func R_NormSpace_of_BoundedFunctions(X,Y) -> non empty NORMSTR equals :: RSSPACE4:def 10 NORMSTR (# BoundedFunctions(X,Y), Zero_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Add_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), Mult_(BoundedFunctions(X,Y), RealVectSpace(X,Y)), BoundedFunctionsNorm(X,Y) #); end; theorem :: RSSPACE4:18 for X be non empty set for Y be RealNormSpace holds (X --> 0.Y) = 0.R_NormSpace_of_BoundedFunctions(X,Y); theorem :: RSSPACE4:19 for X be non empty set for Y be RealNormSpace for f being Point of R_NormSpace_of_BoundedFunctions(X,Y) for g be bounded Function of X,the carrier of Y st g=f holds for t be Element of X holds ||.g.t.|| <= ||.f.||; theorem :: RSSPACE4:20 for X be non empty set for Y be RealNormSpace for f being Point of R_NormSpace_of_BoundedFunctions(X,Y) holds 0 <= ||.f.||; theorem :: RSSPACE4:21 for X be non empty set for Y be RealNormSpace for f being Point of R_NormSpace_of_BoundedFunctions(X,Y) st f = 0.R_NormSpace_of_BoundedFunctions(X,Y) holds 0 = ||.f.||; theorem :: RSSPACE4:22 for X be non empty set for Y be RealNormSpace for f,g,h be Point of R_NormSpace_of_BoundedFunctions(X,Y) for f',g',h' be bounded Function of X,the carrier of Y st f'=f & g'=g & h'=h holds (h = f+g iff (for x be Element of X holds (h'.x = f'.x + g'.x)) ); theorem :: RSSPACE4:23 for X be non empty set for Y be RealNormSpace for f,h be Point of R_NormSpace_of_BoundedFunctions(X,Y) for f',h' be bounded Function of X,the carrier of Y st f'=f & h'=h for a be Real holds h = a*f iff for x be Element of X holds h'.x = a*f'.x; theorem :: RSSPACE4:24 for X be non empty set for Y be RealNormSpace for f, g being Point of R_NormSpace_of_BoundedFunctions(X,Y) for a be Real holds ( ||.f.|| = 0 iff f = 0.R_NormSpace_of_BoundedFunctions(X,Y) ) & ||.a*f.|| = abs(a) * ||.f.|| & ||.f+g.|| <= ||.f.|| + ||.g.||; theorem :: RSSPACE4:25 for X be non empty set for Y be RealNormSpace holds R_NormSpace_of_BoundedFunctions(X,Y) is RealNormSpace-like; theorem :: RSSPACE4:26 for X be non empty set for Y be RealNormSpace holds R_NormSpace_of_BoundedFunctions(X,Y) is RealNormSpace; definition let X be non empty set; let Y be RealNormSpace; cluster R_NormSpace_of_BoundedFunctions(X,Y) -> RealNormSpace-like RealLinearSpace-like Abelian add-associative right_zeroed right_complementable; end; theorem :: RSSPACE4:27 for X be non empty set for Y be RealNormSpace for f,g,h be Point of R_NormSpace_of_BoundedFunctions(X,Y) for f',g',h' be bounded Function of X,the carrier of Y st f'=f & g'=g & h'=h holds (h = f-g iff (for x be Element of X holds (h'.x = f'.x - g'.x)) ); theorem :: RSSPACE4:28 for X be non empty set for Y be RealNormSpace st Y is complete for seq be sequence of R_NormSpace_of_BoundedFunctions(X,Y) st seq is Cauchy_sequence_by_Norm holds seq is convergent; theorem :: RSSPACE4:29 for X be non empty set for Y be RealBanachSpace holds R_NormSpace_of_BoundedFunctions(X,Y) is RealBanachSpace; definition let X be non empty set; let Y be RealBanachSpace; cluster R_NormSpace_of_BoundedFunctions (X,Y) -> complete; end;