environ vocabulary CQC_LANG, ZF_LANG, CQC_THE1, QC_LANG1, QMAX_1; notation SUBSET_1, CQC_LANG, CQC_THE1; constructors CQC_THE1, XBOOLE_0; clusters CQC_LANG, ZFMISC_1, XBOOLE_0; begin reserve p, q, r, s, t for Element of CQC-WFF; reserve X for Subset of CQC-WFF; theorem :: LUKASI_1:1 :: Hypothetical syllogism (p => q) => ((q => r) => (p => r)) in TAUT; theorem :: LUKASI_1:2 p => q in TAUT implies (q => r) => (p => r) in TAUT; theorem :: LUKASI_1:3 p => q in TAUT & q => r in TAUT implies p => r in TAUT; theorem :: LUKASI_1:4 :: Identity law p => p in TAUT; theorem :: LUKASI_1:5 :: Simplification q => (p => q) in TAUT; theorem :: LUKASI_1:6 ((p => q) => r) => (q => r) in TAUT; theorem :: LUKASI_1:7 :: Modus ponendo ponens q => ((q => p) => p) in TAUT; theorem :: LUKASI_1:8 :: Contraposition (s => (q => p)) => (q => (s => p)) in TAUT; theorem :: LUKASI_1:9 (q => r) => ((p => q) => (p => r)) in TAUT; theorem :: LUKASI_1:10 :: A Hilbert axiom (q => (q => r)) => (q => r) in TAUT; theorem :: LUKASI_1:11 :: Frege's law (p => (q => r)) => ((p => q) => (p => r)) in TAUT; theorem :: LUKASI_1:12 'not' VERUM => p in TAUT; theorem :: LUKASI_1:13 q in TAUT implies p => q in TAUT; theorem :: LUKASI_1:14 p in TAUT implies (p => q) => q in TAUT; theorem :: LUKASI_1:15 s => (q => p) in TAUT implies q => (s => p) in TAUT; theorem :: LUKASI_1:16 s => (q => p) in TAUT & q in TAUT implies s => p in TAUT; theorem :: LUKASI_1:17 s => (q => p) in TAUT & q in TAUT & s in TAUT implies p in TAUT; theorem :: LUKASI_1:18 q => (q => r) in TAUT implies q => r in TAUT; theorem :: LUKASI_1:19 (p => (q => r)) in TAUT implies (p => q) => (p => r) in TAUT; theorem :: LUKASI_1:20 (p => (q => r)) in TAUT & p => q in TAUT implies p => r in TAUT; theorem :: LUKASI_1:21 (p => (q => r)) in TAUT & p => q in TAUT & p in TAUT implies r in TAUT; theorem :: LUKASI_1:22 p => (q => r) in TAUT & p => (r => s ) in TAUT implies p => (q => s) in TAUT; theorem :: LUKASI_1:23 p => VERUM in TAUT; theorem :: LUKASI_1:24 ('not' p => 'not' q) => (q => p) in TAUT; theorem :: LUKASI_1:25 'not' 'not' p => p in TAUT; theorem :: LUKASI_1:26 (p => q) => ('not' q => 'not' p) in TAUT; theorem :: LUKASI_1:27 p => 'not' 'not' p in TAUT; theorem :: LUKASI_1:28 ('not' 'not' p => q) => (p => q) in TAUT & (p => q) => ('not' 'not' p => q) in TAUT; theorem :: LUKASI_1:29 (p => 'not' 'not' q) => (p => q) in TAUT & (p => q) => (p => 'not' 'not' q) in TAUT; theorem :: LUKASI_1:30 (p => 'not' q) => (q => 'not' p) in TAUT; theorem :: LUKASI_1:31 ('not' p => q) => ('not' q => p) in TAUT; theorem :: LUKASI_1:32 (p => 'not' p) => 'not' p in TAUT; theorem :: LUKASI_1:33 'not' p => (p => q) in TAUT; theorem :: LUKASI_1:34 p => q in TAUT iff 'not' q => 'not' p in TAUT; theorem :: LUKASI_1:35 'not' p => 'not' q in TAUT implies q => p in TAUT; theorem :: LUKASI_1:36 p in TAUT iff 'not' 'not' p in TAUT; theorem :: LUKASI_1:37 (p => q) in TAUT iff (p => 'not' 'not' q) in TAUT; theorem :: LUKASI_1:38 (p => q) in TAUT iff ('not' 'not' p => q) in TAUT; theorem :: LUKASI_1:39 p => 'not' q in TAUT implies q => 'not' p in TAUT; theorem :: LUKASI_1:40 'not' p => q in TAUT implies 'not' q => p in TAUT; :: predykat |- i schematy konsekwencji theorem :: LUKASI_1:41 |- (p => q) => ((q => r) => (p => r)); theorem :: LUKASI_1:42 |- p => q implies |- (q => r) => (p => r); theorem :: LUKASI_1:43 |- p => q & |- q => r implies |- p => r; theorem :: LUKASI_1:44 |- p => p; theorem :: LUKASI_1:45 |- p => (q => p); theorem :: LUKASI_1:46 |- p implies |- q => p; theorem :: LUKASI_1:47 |- (s => (q => p)) => (q => (s => p)); theorem :: LUKASI_1:48 |- p => (q => r) implies |- q => (p => r); theorem :: LUKASI_1:49 |- p => (q => r) & |- q implies |- p => r; theorem :: LUKASI_1:50 |- p => VERUM & |- 'not' VERUM => p; theorem :: LUKASI_1:51 |- p => ((p => q) => q); theorem :: LUKASI_1:52 |- (q => (q => r)) => (q => r); theorem :: LUKASI_1:53 |- q => (q => r) implies |- q => r; theorem :: LUKASI_1:54 |- (p => (q => r)) => ((p => q) => (p => r)); theorem :: LUKASI_1:55 |- p => (q => r) implies |- (p => q) => (p => r); theorem :: LUKASI_1:56 |- p => (q => r) & |- p => q implies |- p => r; theorem :: LUKASI_1:57 |- ((p => q) => r) => (q => r); theorem :: LUKASI_1:58 |- (p => q) => r implies |- q => r; theorem :: LUKASI_1:59 |- (p => q) => ((r => p) => (r => q)); theorem :: LUKASI_1:60 |- p => q implies |- (r => p) => (r => q); theorem :: LUKASI_1:61 |- (p => q) => ('not' q => 'not' p); theorem :: LUKASI_1:62 |- ('not' p => 'not' q) => (q => p); theorem :: LUKASI_1:63 |- 'not' p => 'not' q iff |- q => p; theorem :: LUKASI_1:64 |- p => 'not' 'not' p; theorem :: LUKASI_1:65 |- 'not' 'not' p => p; theorem :: LUKASI_1:66 |- 'not' 'not' p iff |- p; theorem :: LUKASI_1:67 |- ('not' 'not' p => q) => (p => q); theorem :: LUKASI_1:68 |- 'not' 'not' p => q iff |- p => q; theorem :: LUKASI_1:69 |- (p => 'not' 'not' q) => (p => q); theorem :: LUKASI_1:70 |- p => 'not' 'not' q iff |- p => q; theorem :: LUKASI_1:71 |- (p => 'not' q) => (q => 'not' p); theorem :: LUKASI_1:72 |- p => 'not' q implies |- q => 'not' p; theorem :: LUKASI_1:73 |- ('not' p => q) => ('not' q => p); theorem :: LUKASI_1:74 |- 'not' p => q implies |- 'not' q => p; theorem :: LUKASI_1:75 X|- p => q implies X|- (q => r) => (p => r); theorem :: LUKASI_1:76 X|- p => q & X|- q => r implies X|- p => r; theorem :: LUKASI_1:77 X|- p => p; theorem :: LUKASI_1:78 X|- p implies X|- q => p; theorem :: LUKASI_1:79 X |- p implies X |- (p => q) => q; theorem :: LUKASI_1:80 X |- p => (q => r) implies X |- q => (p => r); theorem :: LUKASI_1:81 X |- p => (q => r) & X |- q implies X |- p => r; theorem :: LUKASI_1:82 X |- p => (p => q) implies X |- p => q; theorem :: LUKASI_1:83 X |- (p => q) => r implies X |- q => r; theorem :: LUKASI_1:84 X |- p => (q => r) implies X |- (p => q) => (p =>r); theorem :: LUKASI_1:85 X |- p => (q => r) & X|- p => q implies X |- p => r; theorem :: LUKASI_1:86 X|- 'not' p => 'not' q iff X|- q => p; theorem :: LUKASI_1:87 X|- 'not' 'not' p iff X|- p; theorem :: LUKASI_1:88 X|- p => 'not' 'not' q iff X|- p => q; theorem :: LUKASI_1:89 X|- 'not' 'not' p => q iff X|- p => q; theorem :: LUKASI_1:90 X|- p => 'not' q implies X|- q => 'not' p; theorem :: LUKASI_1:91 X|- 'not' p => q implies X|- 'not' q => p; theorem :: LUKASI_1:92 X|- p => 'not' q & X |- q implies X|- 'not' p; theorem :: LUKASI_1:93 X|- 'not' p => q & X |- 'not' q implies X|- p;