environ vocabulary ORDINAL2, ARYTM, BOOLE, FINSET_1, FUNCT_1, RELAT_1, MCART_1, FINSEQ_1, CQC_LANG, QC_LANG1, ZF_LANG, ARYTM_1, QMAX_1, CQC_THE1; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, XCMPLX_0, XREAL_0, RELAT_1, FUNCT_1, ORDINAL2, NAT_1, FINSET_1, FINSEQ_1, MCART_1, QC_LANG1, CQC_LANG; constructors NAT_1, CQC_LANG, XREAL_0, MEMBERED, XBOOLE_0; clusters SUBSET_1, FINSET_1, RELSET_1, XREAL_0, CQC_LANG, FINSEQ_1, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: --------- Auxiliary theorems reserve n for natural number; canceled; theorem :: CQC_THE1:2 n <= 1 implies n = 0 or n = 1; theorem :: CQC_THE1:3 n <= 2 implies n = 0 or n = 1 or n = 2; theorem :: CQC_THE1:4 n <= 3 implies n = 0 or n = 1 or n = 2 or n = 3; theorem :: CQC_THE1:5 n <= 4 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4; theorem :: CQC_THE1:6 n <= 5 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5; theorem :: CQC_THE1:7 n <= 6 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6; theorem :: CQC_THE1:8 n <= 7 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7; theorem :: CQC_THE1:9 n <= 8 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8; theorem :: CQC_THE1:10 n <= 9 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8 or n = 9; reserve i,j,n,k,l for Nat; reserve a for set; theorem :: CQC_THE1:11 {k: k <= n + 1} = {i: i <= n} \/ {n + 1}; theorem :: CQC_THE1:12 for n holds {k: k <= n} is finite; reserve X,Y,Z for set; theorem :: CQC_THE1:13 X is finite & X c= [:Y,Z:] implies ex A,B being set st A is finite & A c= Y & B is finite & B c= Z & X c= [:A,B:]; theorem :: CQC_THE1:14 X is finite & Z is finite & X c= [:Y,Z:] implies ex A being set st A is finite & A c= Y & X c= [:A,Z:]; :: --------- The axiomatic of a first-order calculus reserve T,S,X,Y for Subset of CQC-WFF; reserve p,q,r,t,F,H,G for Element of CQC-WFF; reserve s for QC-formula; reserve x,y for bound_QC-variable; definition let T; attr T is being_a_theory means :: CQC_THE1:def 1 VERUM in T & for p,q,r,s,x,y holds ('not' p => p) => p in T & p => ('not' p => q) in T & (p => q) => ('not'(q '&' r) => 'not'(p '&' r)) in T & (p '&' q => q '&' p in T) & (p in T & p => q in T implies q in T) & (All(x,p) => p in T) & (p => q in T & not x in still_not-bound_in p implies p => All(x,q) in T) & (s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & s.x in T implies s.y in T); synonym T is_a_theory; end; canceled 10; theorem :: CQC_THE1:25 T is_a_theory & S is_a_theory implies T /\ S is_a_theory; :: --------- The consequence operation definition let X; func Cn(X) -> Subset of CQC-WFF means :: CQC_THE1:def 2 t in it iff for T st T is_a_theory & X c= T holds t in T; end; canceled; theorem :: CQC_THE1:27 VERUM in Cn(X); theorem :: CQC_THE1:28 ('not' p => p) => p in Cn(X); theorem :: CQC_THE1:29 p => ('not' p => q) in Cn(X); theorem :: CQC_THE1:30 (p => q) => ('not'(q '&' r) => 'not'(p '&' r)) in Cn(X); theorem :: CQC_THE1:31 p '&' q => q '&' p in Cn(X); theorem :: CQC_THE1:32 p in Cn(X) & p => q in Cn(X) implies q in Cn(X); theorem :: CQC_THE1:33 All(x,p) => p in Cn(X); theorem :: CQC_THE1:34 p => q in Cn(X) & not x in still_not-bound_in p implies p => All(x,q) in Cn(X); theorem :: CQC_THE1:35 s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & s.x in Cn(X) implies s.y in Cn(X); theorem :: CQC_THE1:36 Cn(X) is_a_theory; theorem :: CQC_THE1:37 T is_a_theory & X c= T implies Cn(X) c= T; theorem :: CQC_THE1:38 X c= Cn(X); theorem :: CQC_THE1:39 X c= Y implies Cn(X) c= Cn(Y); theorem :: CQC_THE1:40 Cn(Cn(X)) = Cn(X); theorem :: CQC_THE1:41 T is_a_theory iff Cn(T) = T; :: ---------- The notion of proof definition func Proof_Step_Kinds -> set equals :: CQC_THE1:def 3 {k: k <= 9}; end; definition cluster Proof_Step_Kinds -> non empty; end; canceled; theorem :: CQC_THE1:43 0 in Proof_Step_Kinds & 1 in Proof_Step_Kinds & 2 in Proof_Step_Kinds & 3 in Proof_Step_Kinds & 4 in Proof_Step_Kinds & 5 in Proof_Step_Kinds & 6 in Proof_Step_Kinds & 7 in Proof_Step_Kinds & 8 in Proof_Step_Kinds & 9 in Proof_Step_Kinds; theorem :: CQC_THE1:44 Proof_Step_Kinds is finite; reserve f,g for FinSequence of [:CQC-WFF,Proof_Step_Kinds:]; theorem :: CQC_THE1:45 1 <= n & n <= len f implies (f.n)`2 = 0 or (f.n)`2 = 1 or (f.n)`2 = 2 or (f.n)`2 = 3 or (f.n)`2 = 4 or (f.n)`2 = 5 or (f.n)`2 = 6 or (f.n)`2 = 7 or (f.n)`2 = 8 or (f.n)`2 = 9; definition let PR be (FinSequence of [:CQC-WFF,Proof_Step_Kinds:]),n,X; pred PR,n is_a_correct_step_wrt X means :: CQC_THE1:def 4 (PR.n)`1 in X if (PR.n)`2 = 0, (PR.n)`1 = VERUM if (PR.n)`2 = 1, ex p st (PR.n)`1 = ('not' p => p) => p if (PR.n)`2 = 2, ex p,q st (PR.n)`1 = p => ('not' p => q) if (PR.n)`2 = 3, ex p,q,r st (PR.n)`1 = (p => q) => ('not'(q '&' r) => 'not'(p '&' r)) if (PR.n)`2 = 4, ex p,q st (PR.n)`1 = p '&' q => q '&' p if (PR.n)`2 = 5, ex p,x st (PR.n)`1 = All(x,p) => p if (PR.n)`2 = 6, ex i,j,p,q st 1 <= i & i < n & 1 <= j & j < i & p = (PR.j)`1 & q = (PR.n)`1 & (PR.i)`1 = p => q if (PR.n)`2 = 7, ex i,p,q,x st 1 <= i & i < n & (PR.i)`1 = p => q & not x in still_not-bound_in p & (PR.n)`1 = p => All(x,q) if (PR.n)`2 = 8, ex i,x,y,s st 1 <= i & i < n & s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & s.x = (PR.i)`1 & s.y = (PR.n)`1 if (PR.n)`2 = 9; end; definition let X,f; pred f is_a_proof_wrt X means :: CQC_THE1:def 5 f <> {} & for n st 1 <= n & n <= len f holds f,n is_a_correct_step_wrt X; end; canceled 11; theorem :: CQC_THE1:57 f is_a_proof_wrt X implies rng f <> {}; theorem :: CQC_THE1:58 f is_a_proof_wrt X implies 1 <= len f; theorem :: CQC_THE1:59 f is_a_proof_wrt X implies (f.1)`2 = 0 or (f.1)`2 = 1 or (f.1)`2 = 2 or (f.1)`2 = 3 or (f.1)`2 = 4 or (f.1)`2 = 5 or (f.1)`2 = 6; theorem :: CQC_THE1:60 1 <= n & n <= len f implies (f,n is_a_correct_step_wrt X iff f^g,n is_a_correct_step_wrt X); theorem :: CQC_THE1:61 1 <= n & n <= len g & g,n is_a_correct_step_wrt X implies (f^g),(n+len f) is_a_correct_step_wrt X; theorem :: CQC_THE1:62 f is_a_proof_wrt X & g is_a_proof_wrt X implies f^g is_a_proof_wrt X; theorem :: CQC_THE1:63 f is_a_proof_wrt X & X c= Y implies f is_a_proof_wrt Y; theorem :: CQC_THE1:64 f is_a_proof_wrt X & 1 <= l & l <= len f implies (f.l)`1 in Cn(X); definition let f; assume f <> {}; func Effect(f) -> Element of CQC-WFF equals :: CQC_THE1:def 6 (f.(len f))`1; end; canceled; theorem :: CQC_THE1:66 f is_a_proof_wrt X implies Effect(f) in Cn(X); theorem :: CQC_THE1:67 X c= {F: ex f st f is_a_proof_wrt X & Effect(f) = F}; theorem :: CQC_THE1:68 for X holds Y = {p: ex f st f is_a_proof_wrt X & Effect(f) = p} implies Y is_a_theory; theorem :: CQC_THE1:69 for X holds {p: ex f st f is_a_proof_wrt X & Effect(f) = p} = Cn(X); theorem :: CQC_THE1:70 p in Cn(X) iff ex f st f is_a_proof_wrt X & Effect(f) = p; theorem :: CQC_THE1:71 p in Cn(X) implies ex Y st Y c= X & Y is finite & p in Cn(Y); :: --------- TAUT - the set of all tautologies definition canceled; func TAUT -> Subset of CQC-WFF equals :: CQC_THE1:def 8 Cn({}(CQC-WFF)); end; canceled 2; theorem :: CQC_THE1:74 T is_a_theory implies TAUT c= T; theorem :: CQC_THE1:75 TAUT c= Cn(X); theorem :: CQC_THE1:76 TAUT is_a_theory; theorem :: CQC_THE1:77 VERUM in TAUT; theorem :: CQC_THE1:78 ('not' p => p) =>p in TAUT; theorem :: CQC_THE1:79 p => ('not' p => q) in TAUT; theorem :: CQC_THE1:80 (p => q) => ('not'(q '&' r) => 'not' (p '&' r)) in TAUT; theorem :: CQC_THE1:81 p '&' q => q '&' p in TAUT; theorem :: CQC_THE1:82 p in TAUT & p => q in TAUT implies q in TAUT; theorem :: CQC_THE1:83 All(x,p) => p in TAUT; theorem :: CQC_THE1:84 p => q in TAUT & not x in still_not-bound_in p implies p => All(x,q) in TAUT; theorem :: CQC_THE1:85 s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & s.x in TAUT implies s.y in TAUT; :: --------- Relation of consequence of a set of formulas definition let X,s; pred X|-s means :: CQC_THE1:def 9 s in Cn(X); end; canceled; theorem :: CQC_THE1:87 X |- VERUM; theorem :: CQC_THE1:88 X |- ('not' p => p) => p; theorem :: CQC_THE1:89 X |- p => ('not' p => q); theorem :: CQC_THE1:90 X |- (p => q) => ('not'(q '&' r) => 'not'(p '&' r)); theorem :: CQC_THE1:91 X |- p '&' q => q '&' p; theorem :: CQC_THE1:92 X |- p & X |- p => q implies X |- q; theorem :: CQC_THE1:93 X |- All(x,p) => p; theorem :: CQC_THE1:94 X |- p => q & not x in still_not-bound_in p implies X |- p => All(x,q); theorem :: CQC_THE1:95 s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & X |- s.x implies X |- s.y; definition let s; attr s is valid means :: CQC_THE1:def 10 {}(CQC-WFF)|-s; synonym |-s; end; definition let s; redefine attr s is valid means :: CQC_THE1:def 11 s in TAUT; end; canceled 2; theorem :: CQC_THE1:98 |- p implies X|- p; theorem :: CQC_THE1:99 |- VERUM; theorem :: CQC_THE1:100 |- ('not' p => p) =>p; theorem :: CQC_THE1:101 |- p => ('not' p => q); theorem :: CQC_THE1:102 |- (p => q) => ('not'(q '&' r) => 'not'(p '&' r)); theorem :: CQC_THE1:103 |- p '&' q => q '&' p; theorem :: CQC_THE1:104 |- p & |- p => q implies |- q; theorem :: CQC_THE1:105 |- All(x,p) => p; theorem :: CQC_THE1:106 |- p => q & not x in still_not-bound_in p implies |- p => All(x,q); theorem :: CQC_THE1:107 s.x in CQC-WFF & s.y in CQC-WFF & not x in still_not-bound_in s & |- s.x implies |- s.y;