Copyright (c) 1990 Association of Mizar Users
environ vocabulary CQC_LANG, ZF_LANG, CQC_THE1, QC_LANG1, QMAX_1; notation SUBSET_1, CQC_LANG, CQC_THE1; constructors CQC_THE1, XBOOLE_0; clusters CQC_LANG, ZFMISC_1, XBOOLE_0; definitions CQC_THE1; theorems CQC_THE1, QC_LANG2; begin reserve p, q, r, s, t for Element of CQC-WFF; reserve X for Subset of CQC-WFF; theorem :: Hypothetical syllogism Th1: (p => q) => ((q => r) => (p => r)) in TAUT proof (p => q) => ('not'(q '&' 'not' r) => 'not'(p '&' 'not' r)) in TAUT by CQC_THE1:80; then (p => q) => ((q => r) => 'not'(p '&' 'not' r)) in TAUT by QC_LANG2:def 2; hence thesis by QC_LANG2:def 2; end; theorem Th2: p => q in TAUT implies (q => r) => (p => r) in TAUT proof assume A1: p => q in TAUT; (p => q) => ((q => r) => (p => r)) in TAUT by Th1; hence (q => r) => (p => r) in TAUT by A1,CQC_THE1:82; end; theorem Th3: p => q in TAUT & q => r in TAUT implies p => r in TAUT proof assume that A1: p => q in TAUT and A2: q => r in TAUT; (p => q) => ((q => r) => (p => r)) in TAUT by Th1; then (q => r) => (p => r) in TAUT by A1,CQC_THE1:82; hence p => r in TAUT by A2,CQC_THE1:82; end; theorem Th4: :: Identity law p => p in TAUT proof ('not' p => p) => p in TAUT & p => ('not' p => p) in TAUT by CQC_THE1:78,79; hence thesis by Th3; end; Lm1: (((q => r) => (p => r)) => s) => ((p => q) => s) in TAUT proof (p => q) => ((q => r) => (p => r)) in TAUT by Th1; hence thesis by Th2; end; Lm2: (p => (q => r)) => ((s => q) => (p => (s => r))) in TAUT proof A1: ((((q => r) => (s => r)) => (p => (s => r))) => ((s => q) => (p => (s => r)))) => ((p => (q => r)) => ((s => q) => (p => (s => r)))) in TAUT by Lm1; (((q => r) => (s => r)) => (p => (s => r))) => ((s => q) => (p => (s => r))) in TAUT by Lm1; hence thesis by A1,CQC_THE1:82; end; Lm3: (p => q) => (((p => r) => s) => ((q => r) => s)) in TAUT proof ((q => r) => (p => r)) => (((p => r) => s) => ((q => r) => s)) in TAUT & (((q => r) => (p => r)) => (((p => r) => s) => ((q => r) => s))) => ((p => q) => (((p => r) => s) => ((q => r) => s))) in TAUT by Lm1,Th1; hence thesis by CQC_THE1:82; end; Lm4: (t => ((p => r) => s)) => ((p => q) => (t => ((q => r) => s))) in TAUT proof ((p => q) => (((p => r) => s) => ((q => r) => s))) in TAUT & ((p => q) => (((p => r) => s) => ((q => r) => s))) => ((t => ((p => r) => s)) => ((p => q) => (t => ((q => r) => s)))) in TAUT by Lm2,Lm3; hence thesis by CQC_THE1:82; end; Lm5: (('not' p => q) => r) => (p => r) in TAUT proof p => ('not' p => q) in TAUT by CQC_THE1:79; hence thesis by Th2; end; Lm6: p => ((('not' p => r) => s) => ((q => r) => s)) in TAUT proof ('not' p => q) => ((('not' p => r) => s) => ((q => r) => s)) in TAUT & ( (('not' p => q) => ((('not' p => r) => s) => ((q => r) => s)) ) => (p => ((('not' p => r) => s) => ((q => r) => s)))) in TAUT by Lm3,Lm5; hence thesis by CQC_THE1:82; end; Lm7: (q => (('not' p => p) => p)) => (('not' p => p) => p) in TAUT proof A1: ('not' p => p) => p in TAUT & ('not'(('not' p => p) => p) => (('not' p => p) => p)) => (('not' p => p) => p) in TAUT by CQC_THE1:78; (('not' p => p) => p) => ((('not'(('not' p => p) => p) => (('not' p => p) => p)) => (('not' p => p) => p)) => ((q => (('not' p => p) => p)) => (('not' p => p) => p))) in TAUT by Lm6; then (('not'(('not' p => p) => p) => (('not' p => p) => p)) => (('not' p => p) => p)) => ((q => (('not' p => p) => p)) => (('not' p => p) => p)) in TAUT by A1,CQC_THE1:82; hence thesis by A1,CQC_THE1:82; end; Lm8: t => (('not' p => p) => p) in TAUT proof ('not' t => (('not' p => p) => p)) => (('not' p => p) => p) in TAUT & (('not' t => (('not' p => p) => p)) => (('not' p => p) => p)) => (t => (('not' p => p) => p)) in TAUT by Lm5,Lm7; hence thesis by CQC_THE1:82; end; Lm9: ('not' p => q) => (t => ((q => p) => p)) in TAUT proof t => (('not' p => p) => p) in TAUT & (t => (('not' p => p) => p)) => (('not' p => q) => (t => ((q => p) => p))) in TAUT by Lm4,Lm8; hence thesis by CQC_THE1:82; end; Lm10: ((t => ((q => p) => p)) => r) => (('not' p => q) => r) in TAUT proof ('not' p => q) => (t => ((q => p) => p)) in TAUT & (('not' p => q) => (t => ((q => p) => p))) => (((t => ((q => p) => p)) => r) => (('not' p => q) => r)) in TAUT by Lm9,Th1; hence thesis by CQC_THE1:82; end; Lm11: ('not' p => q) => ((q => p) => p) in TAUT proof ('not'((q => p) => p) => ((q => p) => p)) => ((q => p) => p) in TAUT & (('not'((q => p) => p) => ((q => p) => p)) => ((q => p) => p)) => (('not' p => q) => ((q => p) => p)) in TAUT by Lm10,CQC_THE1:78; hence thesis by CQC_THE1:82; end; Lm12: p => ((q => p) => p) in TAUT proof ('not' p => q) => ((q => p) => p) in TAUT & (('not' p => q) => ((q => p) => p)) => (p => ((q => p) => p)) in TAUT by Lm5,Lm11; hence thesis by CQC_THE1:82; end; theorem :: Simplification Th5: q => (p => q) in TAUT proof A1:q => (('not' p => q) => q) in TAUT & p => ('not' p => q) in TAUT by Lm12,CQC_THE1:79; (q => (('not' p => q) => q)) => ((p => ('not' p => q)) => (q => (p => q))) in TAUT by Lm2; then (p => ('not' p => q)) => (q => (p => q)) in TAUT by A1,CQC_THE1:82; hence thesis by A1,CQC_THE1:82; end; theorem Th6: ((p => q) => r) => (q => r) in TAUT proof q => (p => q) in TAUT & (q => (p => q)) => (((p => q) => r) => (q => r)) in TAUT by Th1,Th5; hence thesis by CQC_THE1:82; end; theorem :: Modus ponendo ponens Th7: q => ((q => p) => p) in TAUT proof ('not' p => q) => ((q => p) => p) in TAUT & (('not' p => q) => ((q => p) => p)) => (q => ((q => p) => p)) in TAUT by Lm11,Th6; hence thesis by CQC_THE1:82; end; theorem :: Contraposition Th8: (s => (q => p)) => (q => (s => p)) in TAUT proof q => ((q => p) => p) in TAUT & (q => ((q => p) => p)) => ((s => (q => p)) => (q => (s => p))) in TAUT by Lm2,Th7; hence thesis by CQC_THE1:82; end; theorem Th9: (q => r) => ((p => q) => (p => r)) in TAUT proof (p => q) => ((q => r) => (p => r)) in TAUT & ((p => q) => ((q => r) => (p => r))) => ((q => r) => ((p => q) => (p => r))) in TAUT by Th1,Th8; hence thesis by CQC_THE1:82; end; Lm13: ((q => (s => p)) => r) => ((s => (q => p)) => r) in TAUT proof (s => (q => p)) => (q => (s => p)) in TAUT & ((s => (q => p)) => (q => (s => p))) => (((q => (s => p)) => r) => ((s => (q => p)) => r)) in TAUT by Th1,Th8; hence thesis by CQC_THE1:82; end; Lm14: ((p => q) => p) => p in TAUT proof ('not' p => (p => q)) => (((p => q) => p) => p) in TAUT & (('not' p => (p => q)) => (((p => q) => p) => p)) => ((p => ('not' p => q)) => (((p => q) => p) => p)) in TAUT by Lm11,Lm13; then p => ('not' p => q) in TAUT & (p => ('not' p => q)) => (((p => q) => p) => p) in TAUT by CQC_THE1:79,82; hence thesis by CQC_THE1:82; end; Lm15: ((p => r) => s) => ((p => q) => ((q => r) => s)) in TAUT proof (p => q) => (((p => r) => s) => ((q => r) => s)) in TAUT & ((p => q) => (((p => r) => s) => ((q => r) => s))) => (((p => r) => s) => ((p => q) => ((q => r) => s))) in TAUT by Lm3,Th8; hence thesis by CQC_THE1:82; end; Lm16: ((p => q) => r) => ((r => p) => p) in TAUT proof ((p => q) => p) => p in TAUT & (((p => q) => p) => p) => (((p => q) => r) => ((r => p) => p)) in TAUT by Lm14,Lm15; hence thesis by CQC_THE1:82; end; Lm17: (((r => p) => p) => s) => (((p => q) => r) => s) in TAUT proof ((p => q) => r) => ((r => p) => p) in TAUT & (((p => q) => r) => ((r => p) => p)) => ((((r => p) => p) => s) => (((p => q) => r) => s)) in TAUT by Lm16,Th1; hence thesis by CQC_THE1:82; end; Lm18: ((q => r) => p) => ((q => p) => p) in TAUT proof ((p => q) => q) => ((q => p) => p) in TAUT & (((p => q) => q) => ((q => p) => p)) => (((q => r) => p) => ((q => p) => p)) in TAUT by Lm16,Lm17; hence thesis by CQC_THE1:82; end; theorem :: A Hilbert axiom Th10: (q => (q => r)) => (q => r) in TAUT proof (q => r) => (q => r) in TAUT & ((q => r) => (q => r)) => ((q => (q => r)) => (q => r)) in TAUT by Lm18,Th4; hence thesis by CQC_THE1:82; end; Lm19: (q => s) => (((q => r) => p) => ((s => p) => p)) in TAUT proof ((q => r) => p) => ((q => p) => p) in TAUT & (((q => r) => p) => ((q => p) => p)) => ((q => s) => (((q => r) => p) => ((s => p) => p))) in TAUT by Lm4,Lm18; hence thesis by CQC_THE1:82; end; Lm20: ((q => r) => p) => ((q => s) => ((s => p) => p)) in TAUT proof (q => s) => (((q => r) => p) => ((s => p) => p)) in TAUT & ((q => s) => (((q => r) => p) => ((s => p) => p))) => (((q => r) => p) => ((q => s) => ((s => p) => p))) in TAUT by Lm19,Th8; hence thesis by CQC_THE1:82; end; Lm21: (q => s) => ((s => (p => (q => r))) => (p => (q => r))) in TAUT proof (q => r) => (p => (q => r)) in TAUT & ((q => r) => (p => (q => r))) => ((q => s) => ((s => (p => (q => r))) => (p => (q => r)))) in TAUT by Lm20,Th5; hence thesis by CQC_THE1:82; end; Lm22: (s => (p => (q => r))) => ((q => s) => (p => (q => r))) in TAUT proof (q => s) => ((s => (p => (q => r))) => (p => (q => r))) in TAUT & ((q => s) => ((s => (p => (q => r))) => (p => (q => r)))) => ((s => (p => (q => r))) => ((q => s) => (p => (q => r)))) in TAUT by Lm21,Th8; hence thesis by CQC_THE1:82; end; theorem :: Frege's law Th11: (p => (q => r)) => ((p => q) => (p => r)) in TAUT proof (q => r) => ((p => q) => (p => r)) in TAUT & ((q => r) => ((p => q) => (p => r))) => ((p => (q => r)) => ((p => q) => (p => r))) in TAUT by Lm22,Th9; hence thesis by CQC_THE1:82; end; theorem Th12: 'not' VERUM => p in TAUT proof VERUM => ('not' VERUM => p) in TAUT by CQC_THE1:79; hence thesis by CQC_THE1:77,82; end; theorem Th13: q in TAUT implies p => q in TAUT proof q => (p => q) in TAUT by Th5; hence thesis by CQC_THE1:82; end; theorem p in TAUT implies (p => q) => q in TAUT proof assume A1: p in TAUT; p => ((p => q) => q) in TAUT by Th7; hence thesis by A1,CQC_THE1:82; end; theorem Th15: s => (q => p) in TAUT implies q => (s => p) in TAUT proof assume A1: s => (q => p) in TAUT; (s => (q => p)) => (q => (s => p)) in TAUT by Th8; hence thesis by A1,CQC_THE1:82; end; theorem Th16: s => (q => p) in TAUT & q in TAUT implies s => p in TAUT proof assume s => (q => p) in TAUT; then q => (s => p) in TAUT by Th15; hence thesis by CQC_THE1:82; end; theorem s => (q => p) in TAUT & q in TAUT & s in TAUT implies p in TAUT proof assume s => (q => p) in TAUT & q in TAUT; then s => p in TAUT by Th16; hence thesis by CQC_THE1:82; end; theorem q => (q => r) in TAUT implies q => r in TAUT proof (q => (q => r)) => (q => r) in TAUT by Th10; hence thesis by CQC_THE1:82; end; theorem Th19: (p => (q => r)) in TAUT implies (p => q) => (p => r) in TAUT proof assume A1: p => (q => r) in TAUT; (p => (q => r)) => ((p => q) => (p => r)) in TAUT by Th11; hence thesis by A1,CQC_THE1:82; end; theorem Th20: (p => (q => r)) in TAUT & p => q in TAUT implies p => r in TAUT proof assume (p => (q => r)) in TAUT; then (p => q) => (p => r) in TAUT by Th19; hence thesis by CQC_THE1:82; end; theorem (p => (q => r)) in TAUT & p => q in TAUT & p in TAUT implies r in TAUT proof assume (p => (q => r)) in TAUT & p => q in TAUT; then p => r in TAUT by Th20; hence thesis by CQC_THE1:82; end; theorem Th22: p => (q => r) in TAUT & p => (r => s ) in TAUT implies p => (q => s) in TAUT proof assume that A1: p => (q => r) in TAUT and A2: p => (r => s ) in TAUT; (q => r) => ((r => s) => (q => s)) in TAUT by Th1; then p => ((q => r) => ((r => s) => (q => s))) in TAUT by Th13; then p => ((r => s) => (q => s)) in TAUT by A1,Th20; hence thesis by A2,Th20; end; theorem p => VERUM in TAUT by Th13,CQC_THE1:77; Lm23: 'not' p => (p => 'not' VERUM) in TAUT proof p => ('not' p => 'not' VERUM) in TAUT by CQC_THE1:79; hence thesis by Th15; end; Lm24: ('not' p => 'not' VERUM) => p in TAUT proof 'not' VERUM => p in TAUT by Th12; then 'not' p => ('not' VERUM => p) in TAUT & ('not' p => ('not' VERUM => p)) => (('not' p => 'not' VERUM) => ('not' p => p)) in TAUT by Th11,Th13; then A1: ('not' p => 'not' VERUM) => ('not' p => p) in TAUT by CQC_THE1:82; ('not' p => p) => p in TAUT by CQC_THE1:78; hence thesis by A1,Th3; end; theorem Th24: ('not' p => 'not' q) => (q => p) in TAUT proof q => ('not' q => 'not' VERUM) in TAUT & ('not' q => 'not' VERUM) => (('not' p => 'not' q) => ('not' p => 'not' VERUM)) in TAUT by Th9,CQC_THE1:79; then A1: q => (('not' p => 'not' q) => ('not' p => 'not' VERUM)) in TAUT by Th3; ('not' p => 'not' VERUM) => p in TAUT by Lm24; then q => (('not' p => 'not' VERUM) => p) in TAUT by Th13; then q => (('not' p => 'not' q) => p) in TAUT by A1,Th22; hence thesis by Th15; end; theorem Th25: 'not' 'not' p => p in TAUT proof 'not' 'not' p => ('not' p => 'not' VERUM) in TAUT & ('not' p => 'not' VERUM) => (VERUM => p) in TAUT by Lm23,Th24; then 'not' 'not' p => (VERUM => p) in TAUT by Th3; then VERUM in TAUT & VERUM => ('not' 'not' p => p) in TAUT by Th15,CQC_THE1 :77; hence thesis by CQC_THE1:82; end; Lm25: now let p; 'not' 'not' p => p in TAUT by Th25; then A1: (p => 'not' VERUM) => ('not' 'not' p => 'not' VERUM) in TAUT by Th2; ('not' 'not' p => 'not' VERUM) => 'not' p in TAUT by Lm24; hence (p => 'not' VERUM) => 'not' p in TAUT by A1,Th3; end; theorem Th26: (p => q) => ('not' q => 'not' p) in TAUT proof (p => 'not' VERUM) => 'not' p in TAUT by Lm25; then A1: 'not' q => ((p => 'not' VERUM) => 'not' p) in TAUT by Th13; A2: 'not' q => (q => 'not' VERUM) in TAUT by Lm23; (q => 'not' VERUM) => ((p => q) => (p => 'not' VERUM)) in TAUT by Th9; then 'not' q => ((p => q) => (p => 'not' VERUM)) in TAUT by A2,Th3; then 'not' q => ((p => q) => 'not' p) in TAUT by A1,Th22; hence thesis by Th15; end; theorem Th27: p => 'not' 'not' p in TAUT proof (VERUM => p) => ('not' p => 'not' VERUM) in TAUT & ('not' p => 'not' VERUM) => 'not' 'not' p in TAUT by Lm25,Th26; then A1: (VERUM => p) => 'not' 'not' p in TAUT by Th3; p => (VERUM => p) in TAUT by Th5; hence thesis by A1,Th3; end; theorem Th28: ('not' 'not' p => q) => (p => q) in TAUT & (p => q) => ('not' 'not' p => q) in TAUT proof (p => 'not' 'not' p) => (('not' 'not' p => q) => (p => q)) in TAUT & p => 'not' 'not' p in TAUT by Th1,Th27; hence ('not' 'not' p => q) => (p => q) in TAUT by Th2; ('not' 'not' p => p) => ((p => q) => ('not' 'not' p => q)) in TAUT & 'not' 'not' p => p in TAUT by Th1,Th25; hence thesis by Th2; end; theorem Th29: (p => 'not' 'not' q) => (p => q) in TAUT & (p => q) => (p => 'not' 'not' q) in TAUT proof 'not' 'not' q => q in TAUT by Th25; then (p => ('not' 'not' q => q)) => ((p => 'not' 'not' q) => (p => q)) in TAUT & p => ('not' 'not' q => q) in TAUT by Th11,Th13; hence (p => 'not' 'not' q) => (p => q) in TAUT by CQC_THE1:82; q => 'not' 'not' q in TAUT by Th27; then (p => (q => 'not' 'not' q)) => ((p => q) => (p => 'not' 'not' q)) in TAUT & p => (q => 'not' 'not' q) in TAUT by Th11,Th13; hence thesis by CQC_THE1:82; end; theorem Th30: (p => 'not' q) => (q => 'not' p) in TAUT proof (p => 'not' q) => ('not' 'not' q => 'not' p) in TAUT & ('not' 'not' q => 'not' p) => (q => 'not' p) in TAUT by Th26,Th28; hence thesis by Th3; end; theorem Th31: ('not' p => q) => ('not' q => p) in TAUT proof ('not' p => q) => ('not' q => 'not' 'not' p) in TAUT & ('not' q => 'not' 'not' p) => ('not' q => p) in TAUT by Th26,Th29; hence thesis by Th3; end; theorem (p => 'not' p) => 'not' p in TAUT proof ('not' 'not' p => 'not' p) => 'not' p in TAUT & (p => 'not' p) => ('not' 'not' p => 'not' p) in TAUT by Th28,CQC_THE1:78; hence thesis by Th3; end; theorem 'not' p => (p => q) in TAUT proof 'not' p => ('not' 'not' p => q) in TAUT & ('not' 'not' p => q) => (p => q) in TAUT by Th28,CQC_THE1:79; hence thesis by Th3; end; theorem Th34: p => q in TAUT iff 'not' q => 'not' p in TAUT proof thus p => q in TAUT implies 'not' q => 'not' p in TAUT proof (p => q) => ('not' q => 'not' p) in TAUT by Th26; hence thesis by CQC_THE1:82; end; thus 'not' q => 'not' p in TAUT implies p => q in TAUT proof ('not' q => 'not' p) => (p => q) in TAUT by Th24; hence thesis by CQC_THE1:82; end; end; theorem 'not' p => 'not' q in TAUT implies q => p in TAUT by Th34; theorem p in TAUT iff 'not' 'not' p in TAUT proof thus p in TAUT implies 'not' 'not' p in TAUT proof assume A1: p in TAUT; p => 'not' 'not' p in TAUT by Th27; hence thesis by A1,CQC_THE1:82; end; assume A2: 'not' 'not' p in TAUT; 'not' 'not' p => p in TAUT by Th25; hence thesis by A2,CQC_THE1:82; end; theorem (p => q) in TAUT iff (p => 'not' 'not' q) in TAUT proof thus (p => q) in TAUT implies (p => 'not' 'not' q) in TAUT proof assume A1: p => q in TAUT; (p => q) => (p => 'not' 'not' q) in TAUT by Th29; hence thesis by A1,CQC_THE1:82; end; assume A2: p => 'not' 'not' q in TAUT; (p => 'not' 'not' q) => (p => q) in TAUT by Th29; hence thesis by A2,CQC_THE1:82; end; theorem (p => q) in TAUT iff ('not' 'not' p => q) in TAUT proof thus (p => q) in TAUT implies ('not' 'not' p => q) in TAUT proof assume A1: p => q in TAUT; (p => q) => ('not' 'not' p => q) in TAUT by Th28; hence thesis by A1,CQC_THE1:82; end; assume A2: 'not' 'not' p => q in TAUT; ('not' 'not' p => q) => (p => q) in TAUT by Th28; hence thesis by A2,CQC_THE1:82; end; theorem p => 'not' q in TAUT implies q => 'not' p in TAUT proof assume A1: p => 'not' q in TAUT; (p => 'not' q) => (q => 'not' p) in TAUT by Th30; hence thesis by A1,CQC_THE1:82; end; theorem 'not' p => q in TAUT implies 'not' q => p in TAUT proof assume A1: 'not' p => q in TAUT; ('not' p => q) => ('not' q => p) in TAUT by Th31; hence thesis by A1,CQC_THE1:82; end; :: predykat |- i schematy konsekwencji theorem Th41:|- (p => q) => ((q => r) => (p => r)) proof thus (p => q) => ((q => r) => (p => r)) in TAUT by Th1; end; theorem |- p => q implies |- (q => r) => (p => r) proof assume A1: |- p => q; |- (p => q) => ((q => r) => (p => r)) by Th41; hence thesis by A1,CQC_THE1:104; end; theorem Th43: |- p => q & |- q => r implies |- p => r proof assume |- p => q & |- q => r; then p => q in TAUT & q => r in TAUT by CQC_THE1:def 11; hence p => r in TAUT by Th3; end; theorem Th44: |- p => p proof thus p => p in TAUT by Th4; end; theorem Th45: |- p => (q => p) proof thus p => (q => p) in TAUT by Th5; end; theorem |- p implies |- q => p proof assume |- p; then p in TAUT by CQC_THE1:def 11; hence q => p in TAUT by Th13; end; theorem Th47: |- (s => (q => p)) => (q => (s => p)) proof thus (s => (q => p)) => (q => (s => p)) in TAUT by Th8; end; theorem Th48: |- p => (q => r) implies |- q => (p => r) proof assume |- p => (q => r); then p => (q => r) in TAUT by CQC_THE1:def 11; hence q => (p => r) in TAUT by Th15; end; theorem |- p => (q => r) & |- q implies |- p => r proof assume |- p => (q => r); then |- q => (p => r) by Th48; hence thesis by CQC_THE1:104; end; theorem |- p => VERUM & |- 'not' VERUM => p proof thus p => VERUM in TAUT by Th13,CQC_THE1:77; thus 'not' VERUM => p in TAUT by Th12; end; theorem Th51: |- p => ((p => q) => q) proof thus p => ((p => q) => q) in TAUT by Th7; end; theorem Th52: |- (q => (q => r)) => (q => r) proof thus (q => (q => r)) => (q => r) in TAUT by Th10; end; theorem |- q => (q => r) implies |- q => r proof assume A1: |- q => (q => r); |- (q => (q => r)) => (q => r) by Th52; hence thesis by A1,CQC_THE1:104; end; theorem Th54: |- (p => (q => r)) => ((p => q) => (p => r)) proof thus (p => (q => r)) => ((p => q) => (p => r)) in TAUT by Th11; end; theorem Th55: |- p => (q => r) implies |- (p => q) => (p => r) proof assume A1:|- p => (q => r); |- (p => (q => r)) => ((p => q) => (p => r)) by Th54; hence thesis by A1,CQC_THE1:104; end; theorem |- p => (q => r) & |- p => q implies |- p => r proof assume A1:|- p => (q => r) & |- p => q; then |- (p => q) => (p => r) by Th55; hence thesis by A1,CQC_THE1:104; end; theorem Th57: |- ((p => q) => r) => (q => r) proof thus ((p => q) => r) => (q => r) in TAUT by Th6; end; theorem |- (p => q) => r implies |- q => r proof assume A1: |- (p => q) => r; |- ((p => q) => r) => (q => r) by Th57; hence thesis by A1,CQC_THE1:104; end; theorem Th59: |- (p => q) => ((r => p) => (r => q)) proof thus (p => q) => ((r => p) => (r => q)) in TAUT by Th9; end; theorem |- p => q implies |- (r => p) => (r => q) proof assume A1: |- p => q; |- (p => q) => ((r => p) => (r => q)) by Th59; hence thesis by A1,CQC_THE1:104; end; theorem Th61: |- (p => q) => ('not' q => 'not' p) proof thus (p => q) => ('not' q => 'not' p) in TAUT by Th26; end; theorem Th62: |- ('not' p => 'not' q) => (q => p) proof thus ('not' p => 'not' q) => (q => p) in TAUT by Th24; end; theorem |- 'not' p => 'not' q iff |- q => p proof thus |- 'not' p => 'not' q implies |- q => p proof assume A1: |- 'not' p => 'not' q; |- ('not' p => 'not' q) => (q => p) by Th62; hence thesis by A1,CQC_THE1:104; end; assume A2: |- q => p; |- (q => p) => ('not' p => 'not' q) by Th61; hence |- 'not' p => 'not' q by A2,CQC_THE1:104; end; theorem Th64: |- p => 'not' 'not' p proof thus p => 'not' 'not' p in TAUT by Th27; end; theorem Th65: |- 'not' 'not' p => p proof thus 'not' 'not' p => p in TAUT by Th25; end; theorem |- 'not' 'not' p iff |- p proof thus |- 'not' 'not' p implies |- p proof assume A1: |- 'not' 'not' p; |- 'not' 'not' p => p by Th65; hence thesis by A1,CQC_THE1:104; end; assume A2: |- p; |- p => 'not' 'not' p by Th64; hence thesis by A2,CQC_THE1:104; end; theorem Th67: |- ('not' 'not' p => q) => (p => q) proof thus ('not' 'not' p => q) => (p => q) in TAUT by Th28; end; theorem |- 'not' 'not' p => q iff |- p => q proof thus |- 'not' 'not' p => q implies |- p => q proof assume A1: |- 'not' 'not' p => q; |- ('not' 'not' p => q) => (p => q) by Th67; hence thesis by A1,CQC_THE1:104; end; assume A2: |- p => q; |- 'not' 'not' p => p by Th65; hence thesis by A2,Th43; end; theorem Th69: |- (p => 'not' 'not' q) => (p => q) proof thus (p => 'not' 'not' q) => (p => q) in TAUT by Th29; end; theorem |- p => 'not' 'not' q iff |- p => q proof thus |- p => 'not' 'not' q implies |- p => q proof assume A1: |- p => 'not' 'not' q; |- (p => 'not' 'not' q) => (p => q) by Th69; hence thesis by A1,CQC_THE1:104; end; assume A2: |- p => q; |- q => 'not' 'not' q by Th64; hence thesis by A2,Th43; end; theorem Th71: |- (p => 'not' q) => (q => 'not' p) proof thus (p => 'not' q) => (q => 'not' p) in TAUT by Th30; end; theorem |- p => 'not' q implies |- q => 'not' p proof assume A1: |- p => 'not' q; |- (p => 'not' q) => (q => 'not' p) by Th71; hence thesis by A1,CQC_THE1:104; end; theorem Th73: |- ('not' p => q) => ('not' q => p) proof thus ('not' p => q) => ('not' q => p) in TAUT by Th31; end; theorem |- 'not' p => q implies |- 'not' q => p proof assume A1: |- 'not' p => q; |- ('not' p => q) => ('not' q => p) by Th73; hence thesis by A1,CQC_THE1:104; end; theorem X|- p => q implies X|- (q => r) => (p => r) proof assume A1: X|- p => q; |- (p => q) => ((q => r) => (p => r)) by Th41; then X|- (p => q) => ((q => r) => (p => r)) by CQC_THE1:98; hence X|- (q => r) => (p => r) by A1,CQC_THE1:92; end; theorem Th76: X|- p => q & X|- q => r implies X|- p => r proof assume A1: X|- p => q & X|- q => r; |- (p => q) => ((q => r) => (p => r)) by Th41; then X|- (p => q) => ((q => r) => (p => r)) by CQC_THE1:98; then X|- (q => r) => (p => r) by A1,CQC_THE1:92; hence thesis by A1,CQC_THE1:92; end; theorem X|- p => p proof |- p => p by Th44; hence thesis by CQC_THE1:98; end; theorem X|- p implies X|- q => p proof assume A1: X|- p; |- p => (q => p) by Th45; then X|- p => (q => p) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem X |- p implies X |- (p => q) => q proof assume A1: X |- p; |- p => ((p => q) => q) by Th51; then X |- p => ((p => q) => q) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem Th80: X |- p => (q => r) implies X |- q => (p => r) proof assume A1: X |- p => (q => r); |- (p => (q => r)) => (q => (p => r)) by Th47; then X|- (p => (q => r)) => (q => (p => r)) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem X |- p => (q => r) & X |- q implies X |- p => r proof assume X |- p => (q => r); then X |- q => (p => r) by Th80; hence thesis by CQC_THE1:92; end; theorem X |- p => (p => q) implies X |- p => q proof assume A1: X |- p => (p => q); |- (p => (p => q)) => (p => q) by Th52; then X|- (p => (p => q)) => (p => q) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem X |- (p => q) => r implies X |- q => r proof assume A1: X |- (p => q) => r; |- ((p => q) => r) => (q => r) by Th57; then X|- ((p => q) => r) => (q => r) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem Th84: X |- p => (q => r) implies X |- (p => q) => (p =>r) proof assume A1: X|- p => (q => r); |- (p => (q => r)) => ((p => q) => (p =>r)) by Th54; then X |- (p => (q => r)) => ((p => q) => (p =>r)) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem X |- p => (q => r) & X|- p => q implies X |- p => r proof assume X|- p => (q => r); then X |- (p => q) => (p =>r) by Th84; hence thesis by CQC_THE1:92; end; theorem X|- 'not' p => 'not' q iff X|- q => p proof thus X|- 'not' p => 'not' q implies X|- q => p proof assume A1: X|- 'not' p => 'not' q; |- ('not' p => 'not' q) => (q => p) by Th62; then X|- ('not' p => 'not' q) => (q => p) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; assume A2: X|- q => p; |- (q => p) => ('not' p => 'not' q) by Th61; then X|- (q => p) => ('not' p => 'not' q) by CQC_THE1:98; hence X|- 'not' p => 'not' q by A2,CQC_THE1:92; end; theorem X|- 'not' 'not' p iff X|- p proof thus X|- 'not' 'not' p implies X|- p proof assume A1: X|- 'not' 'not' p; |- 'not' 'not' p => p by Th65; then X|- 'not' 'not' p => p by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; assume A2: X|- p; |- p => 'not' 'not' p by Th64; then X|- p => 'not' 'not' p by CQC_THE1:98; hence thesis by A2,CQC_THE1:92; end; theorem X|- p => 'not' 'not' q iff X|- p => q proof thus X|- p => 'not' 'not' q implies X|- p => q proof assume A1: X|- p => 'not' 'not' q; |- (p => 'not' 'not' q) => (p => q) by Th69; then X|- (p => 'not' 'not' q) => (p => q) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; assume A2: X|- p => q; |- q => 'not' 'not' q by Th64; then X|- q => 'not' 'not' q by CQC_THE1:98; hence thesis by A2,Th76; end; theorem X|- 'not' 'not' p => q iff X|- p => q proof thus X|- 'not' 'not' p => q implies X|- p => q proof assume A1: X|- 'not' 'not' p => q; |- ('not' 'not' p => q) => (p => q) by Th67; then X|- ('not' 'not' p => q) => (p => q) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; assume A2: X|- p => q; |- 'not' 'not' p => p by Th65; then X|- 'not' 'not' p => p by CQC_THE1:98; hence thesis by A2,Th76; end; theorem Th90: X|- p => 'not' q implies X|- q => 'not' p proof assume A1: X|- p => 'not' q; |- (p => 'not' q) => (q => 'not' p) by Th71; then X|- (p => 'not' q) => (q => 'not' p) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem Th91: X|- 'not' p => q implies X|- 'not' q => p proof assume A1: X|- 'not' p => q; |- ('not' p => q) => ('not' q => p) by Th73; then X|- ('not' p => q) => ('not' q => p) by CQC_THE1:98; hence thesis by A1,CQC_THE1:92; end; theorem X|- p => 'not' q & X |- q implies X|- 'not' p proof assume X|- p => 'not' q; then X |- q => 'not' p by Th90; hence thesis by CQC_THE1:92; end; theorem X|- 'not' p => q & X |- 'not' q implies X|- p proof assume X|- 'not' p => q; then X |- 'not' q => p by Th91; hence thesis by CQC_THE1:92; end;