Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Nedzusiak
- Received June 1, 1990
- MML identifier: PROB_2
- [
Mizar article,
MML identifier index
]
environ
vocabulary SEQ_1, PROB_1, ARYTM_3, RELAT_1, SEQ_2, FUNCT_1, ARYTM_1, ORDINAL2,
ARYTM, ABSVALUE, BOOLE, SUBSET_1, PROB_2;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0,
XREAL_0, RELAT_1, REAL_1, FUNCT_1, FUNCT_2, ABSVALUE, SEQ_1, SEQ_2,
PROB_1, NAT_1;
constructors REAL_1, ABSVALUE, SEQ_2, PROB_1, NAT_1, MEMBERED, XBOOLE_0;
clusters SUBSET_1, XREAL_0, RELSET_1, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0,
NUMBERS, ORDINAL2;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin
reserve Omega for non empty set;
reserve m,n,k for Nat;
reserve x,y,z for set;
reserve r,r1,r2,r3 for Real;
reserve seq,seq1 for Real_Sequence;
reserve Sigma for SigmaField of Omega;
reserve ASeq,BSeq for SetSequence of Sigma;
reserve P,P1,P2 for Probability of Sigma;
reserve A, B, C, A1, A2, A3 for Event of Sigma;
canceled 3;
theorem :: PROB_2:4
for r,r1,r2,r3 st (r <> 0 & r1 <> 0) holds
(r3/r1 = r2/r iff r3 * r = r2 * r1);
theorem :: PROB_2:5
(seq is convergent & for n holds seq1.n = r - seq.n) implies
seq1 is convergent & lim seq1 = r - lim seq;
::
:: THEOREMS CONCERNED EVENTS
::
theorem :: PROB_2:6
A /\ Omega = A & A /\ ([#] Sigma) = A;
scheme SeqExProb{F(Nat) -> set}:
ex f being Function st dom f = NAT & for n holds f.n = F(n);
definition let Omega,Sigma,ASeq,n;
redefine func ASeq.n -> Event of Sigma;
end;
definition let Omega,Sigma,ASeq;
func @Intersection ASeq -> Event of Sigma equals
:: PROB_2:def 1
Intersection ASeq;
end;
canceled 2;
theorem :: PROB_2:9
ex BSeq st for n holds BSeq.n = ASeq.n /\ B;
theorem :: PROB_2:10
(ASeq is non-increasing &
for n holds BSeq.n = ASeq.n /\ B) implies BSeq is non-increasing;
theorem :: PROB_2:11
for f being Function of Sigma,REAL holds
(f*ASeq).n = f.(ASeq.n);
theorem :: PROB_2:12
(for n holds BSeq.n = ASeq.n /\ B) implies
(Intersection ASeq) /\ B = Intersection BSeq;
theorem :: PROB_2:13
(for A holds P.A = P1.A) implies P = P1;
theorem :: PROB_2:14
for ASeq being SetSequence of Omega holds
ASeq is non-increasing iff for n holds ASeq.(n+1) c= ASeq.n;
theorem :: PROB_2:15
for ASeq being SetSequence of Omega holds
ASeq is non-decreasing iff for n holds ASeq.n c= ASeq.(n+1);
theorem :: PROB_2:16
for ASeq,BSeq being SetSequence of Omega
st (for n holds ASeq.n = BSeq.n) holds ASeq = BSeq;
theorem :: PROB_2:17
for ASeq being SetSequence of Omega holds
(ASeq is non-increasing iff Complement ASeq is non-decreasing);
definition let Omega,Sigma,ASeq;
func @Complement ASeq -> SetSequence of Sigma equals
:: PROB_2:def 2
Complement ASeq;
end;
definition let F be Function;
attr F is disjoint_valued means
:: PROB_2:def 3
x <> y implies F.x misses F.y;
end;
definition let Omega,Sigma,ASeq;
redefine attr ASeq is disjoint_valued means
:: PROB_2:def 4
for m,n st m <> n holds ASeq.m misses ASeq.n;
end;
::
:: THEOREMS CONCERNED PROBABILITY
::
canceled 2;
theorem :: PROB_2:20
:: Equivalent Definition of Probability
for P being Function of Sigma,REAL holds
P is Probability of Sigma iff
(for A holds 0 <= P.A) &
(P.Omega = 1) &
(for A,B st A misses B holds P.(A \/ B) = P.A + P.B) &
(for ASeq st ASeq is non-decreasing holds
(P * ASeq is convergent & lim (P * ASeq) = P.Union ASeq));
theorem :: PROB_2:21
P.(A \/ B \/ C) =
P.A + P.B + P.C - (P.(A /\ B) + P.(B /\ C) + P.(A /\ C)) + P.(A /\ B /\ C);
theorem :: PROB_2:22
P.(A \ (A /\ B)) = P.A - P.(A /\ B);
theorem :: PROB_2:23
P.(A /\ B) <= P.B & P.(A /\ B) <= P.A;
theorem :: PROB_2:24
C = B` implies P.A = P.(A /\ B) + P.(A /\ C);
theorem :: PROB_2:25
P.A + P.B - 1 <= P.(A /\ B);
theorem :: PROB_2:26
P.A = 1 - P.([#] Sigma \ A);
theorem :: PROB_2:27
P.A < 1 iff 0 < P.([#] Sigma \ A);
theorem :: PROB_2:28
P.([#] Sigma \ A) < 1 iff 0 < P.A;
::
:: INDEPENDENCE OF EVENTS
::
definition
let Omega, Sigma, P, A, B;
pred A,B are_independent_respect_to P means
:: PROB_2:def 5
P.(A /\ B) = P.A * P.B;
let C;
pred A,B,C are_independent_respect_to P means
:: PROB_2:def 6
P.(A /\ B /\ C) = P.A * P.B * P.C &
P.(A /\ B) = P.A * P.B &
P.(A /\ C) = P.A * P.C &
P.(B /\ C) = P.B * P.C;
end;
canceled 2;
theorem :: PROB_2:31
A,B are_independent_respect_to P iff
B,A are_independent_respect_to P;
theorem :: PROB_2:32
(A,B,C are_independent_respect_to P iff
(P.(A /\ B /\ C) = P.A * P.B * P.C &
A,B are_independent_respect_to P &
B,C are_independent_respect_to P &
A,C are_independent_respect_to P));
theorem :: PROB_2:33
A,B,C are_independent_respect_to P
implies B,A,C are_independent_respect_to P;
theorem :: PROB_2:34
A,B,C are_independent_respect_to P
implies A,C,B are_independent_respect_to P;
theorem :: PROB_2:35
for E being Event of Sigma st E = {} holds
A, E are_independent_respect_to P;
theorem :: PROB_2:36
A, [#] Sigma are_independent_respect_to P;
theorem :: PROB_2:37
for A,B,P st A,B are_independent_respect_to P
holds A,([#] Sigma \ B) are_independent_respect_to P;
theorem :: PROB_2:38
A,B are_independent_respect_to P implies
([#] Sigma \ A),([#] Sigma \ B) are_independent_respect_to P;
theorem :: PROB_2:39
for A,B,C,P st (A,B are_independent_respect_to P &
A,C are_independent_respect_to P & B misses C) holds
A,B \/ C are_independent_respect_to P;
theorem :: PROB_2:40
for P,A,B st (A,B are_independent_respect_to P & P.A < 1 & P.B < 1)
holds P.(A \/ B) < 1;
::
:: CONDITIONAL PROBABILITY
::
definition let Omega,Sigma,P,B;
assume 0 < P.B;
func P.|.B -> Probability of Sigma means
:: PROB_2:def 7
for A holds it.A = P.(A /\ B)/P.B;
end;
canceled;
theorem :: PROB_2:42
for P,B,A st 0 < P.B holds P.(A /\ B) = P.|.B.A * P.B;
theorem :: PROB_2:43
for P,A,B,C st 0 < P.(A /\ B) holds
P.(A /\ B /\ C) = P.A * P.|.A.B * P.|.(A /\ B).C;
theorem :: PROB_2:44
:: Total Probability Rule for Two Events
for P,A,B,C st (C = B` & 0 < P.B & 0 < P.C ) holds
P.A = P.|.B.A * P.B + P.|.C.A * P.C;
theorem :: PROB_2:45
:: Total Probability Rule for Three Events
for P,A,A1,A2,A3 st (A1 misses A2 & A3 = (A1 \/ A2)` &
0 < P.A1 & 0 < P.A2 & 0 < P.A3) holds
P.A = (P.|.A1.A * P.A1) + (P.|.A2.A * P.A2) + (P.|.A3.A * P.A3);
theorem :: PROB_2:46
for P,A,B st 0 < P.B holds
(P.|.B.A = P.A iff A,B are_independent_respect_to P);
theorem :: PROB_2:47
for P,A,B st (0 < P.B & P.B < 1 & P.|.B.A = P.|.([#] Sigma \ B).A) holds
A,B are_independent_respect_to P;
theorem :: PROB_2:48
for P,A,B st 0 < P.B holds (P.A + P.B - 1)/ P.B <= P.|.B.A;
theorem :: PROB_2:49
for A,B,P st (0 < P.A & 0 < P.B) holds
P.|.B.A = P.|.A.B * P.A / P.B;
theorem :: PROB_2:50
::Bayes' Theorem for Two Events
for B,A1,A2,P st (0 < P.B & A2 = A1` & 0 < P.A1 & 0 < P.A2) holds
P.|.B.A1 = (P.|.A1.B * P.A1) / (P.|.A1.B * P.A1 + P.|.A2.B * P.A2) &
P.|.B.A2 = (P.|.A2.B * P.A2) / (P.|.A1.B * P.A1 + P.|.A2.B * P.A2);
theorem :: PROB_2:51
:: Bayes' Theorem for Three Events
for B,A1,A2,A3,P st (0<P.B & 0<P.A1 & 0<P.A2 & 0<P.A3 &
A1 misses A2 & A3=(A1 \/ A2)`) holds
P.|.B.A1 = (P.|.A1.B * P.A1)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3) &
P.|.B.A2 = (P.|.A2.B * P.A2)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3) &
P.|.B.A3 = (P.|.A3.B * P.A3)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3);
theorem :: PROB_2:52
for A,B,P st 0 < P.B holds 1 - P.([#] Sigma \ A)/P.B <= P.|.B.A;
Back to top