Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990 Association of Mizar Users

The abstract of the Mizar article:

Probability

by
Andrzej Nedzusiak

Received June 1, 1990

MML identifier: PROB_2
[ Mizar article, MML identifier index ]


environ

 vocabulary SEQ_1, PROB_1, ARYTM_3, RELAT_1, SEQ_2, FUNCT_1, ARYTM_1, ORDINAL2,
      ARYTM, ABSVALUE, BOOLE, SUBSET_1, PROB_2;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0,
      XREAL_0, RELAT_1, REAL_1, FUNCT_1, FUNCT_2, ABSVALUE, SEQ_1, SEQ_2,
      PROB_1, NAT_1;
 constructors REAL_1, ABSVALUE, SEQ_2, PROB_1, NAT_1, MEMBERED, XBOOLE_0;
 clusters SUBSET_1, XREAL_0, RELSET_1, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0,
      NUMBERS, ORDINAL2;
 requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;


begin

reserve Omega for non empty set;
reserve m,n,k for Nat;
reserve x,y,z for set;
reserve r,r1,r2,r3 for Real;
reserve seq,seq1 for Real_Sequence;
reserve Sigma for SigmaField of Omega;
reserve ASeq,BSeq for SetSequence of Sigma;
reserve P,P1,P2 for Probability of Sigma;
reserve A, B, C, A1, A2, A3 for Event of Sigma;

canceled 3;

theorem :: PROB_2:4
 for r,r1,r2,r3 st (r <> 0 & r1 <> 0) holds
  (r3/r1 = r2/r iff r3 * r = r2 * r1);

theorem :: PROB_2:5
 (seq is convergent & for n holds seq1.n = r - seq.n) implies
  seq1 is convergent & lim seq1 = r - lim seq;

::
:: THEOREMS CONCERNED EVENTS
::
theorem :: PROB_2:6
  A /\ Omega = A & A /\ ([#] Sigma) = A;

scheme SeqExProb{F(Nat) -> set}:
  ex f being Function st dom f = NAT & for n holds f.n = F(n);

definition let Omega,Sigma,ASeq,n;
  redefine func ASeq.n -> Event of Sigma;
end;

definition let Omega,Sigma,ASeq;
  func @Intersection ASeq -> Event of Sigma equals
:: PROB_2:def 1
   Intersection ASeq;
end;

canceled 2;

theorem :: PROB_2:9
 ex BSeq st for n holds BSeq.n = ASeq.n /\ B;

theorem :: PROB_2:10
 (ASeq is non-increasing &
       for n holds BSeq.n = ASeq.n /\ B) implies BSeq is non-increasing;

theorem :: PROB_2:11
 for f being Function of Sigma,REAL holds
       (f*ASeq).n = f.(ASeq.n);

theorem :: PROB_2:12
 (for n holds BSeq.n = ASeq.n /\ B) implies
       (Intersection ASeq) /\ B = Intersection BSeq;

theorem :: PROB_2:13
 (for A holds P.A = P1.A) implies P = P1;

theorem :: PROB_2:14
   for ASeq being SetSequence of Omega holds
          ASeq is non-increasing iff for n holds ASeq.(n+1) c= ASeq.n;

theorem :: PROB_2:15
   for ASeq being SetSequence of Omega holds
      ASeq is non-decreasing iff for n holds ASeq.n c= ASeq.(n+1);

theorem :: PROB_2:16
   for ASeq,BSeq being SetSequence of Omega
          st (for n holds ASeq.n = BSeq.n) holds ASeq = BSeq;

theorem :: PROB_2:17
 for ASeq being SetSequence of Omega holds
    (ASeq is non-increasing iff Complement ASeq is non-decreasing);

definition let Omega,Sigma,ASeq;
 func @Complement ASeq -> SetSequence of Sigma equals
:: PROB_2:def 2
        Complement ASeq;
end;

definition let F be Function;
attr F is disjoint_valued means
:: PROB_2:def 3
 x <> y implies F.x misses F.y;
end;

definition let Omega,Sigma,ASeq;
redefine attr ASeq is disjoint_valued means
:: PROB_2:def 4
   for m,n st m <> n holds ASeq.m misses ASeq.n;
end;

::
:: THEOREMS CONCERNED PROBABILITY
::

canceled 2;

theorem :: PROB_2:20
:: Equivalent Definition of Probability
   for P being Function of Sigma,REAL holds
      P is Probability of Sigma iff
     (for A holds 0 <= P.A) &
     (P.Omega = 1) &
     (for A,B st A misses B holds P.(A \/ B) = P.A + P.B) &
     (for ASeq st ASeq is non-decreasing holds
     (P * ASeq is convergent & lim (P * ASeq) = P.Union ASeq));

theorem :: PROB_2:21
   P.(A \/ B \/ C) =
  P.A + P.B + P.C - (P.(A /\ B) + P.(B /\ C) + P.(A /\ C)) + P.(A /\ B /\ C);

theorem :: PROB_2:22
 P.(A \ (A /\ B)) = P.A - P.(A /\ B);

theorem :: PROB_2:23
 P.(A /\ B) <= P.B & P.(A /\ B) <= P.A;

theorem :: PROB_2:24
 C = B` implies P.A = P.(A /\ B) + P.(A /\ C);

theorem :: PROB_2:25
 P.A + P.B - 1 <= P.(A /\ B);

theorem :: PROB_2:26
 P.A = 1 - P.([#] Sigma \ A);

theorem :: PROB_2:27
 P.A < 1 iff 0 < P.([#] Sigma \ A);

theorem :: PROB_2:28
   P.([#] Sigma \ A) < 1 iff 0 < P.A;

::
:: INDEPENDENCE OF EVENTS
::

definition
  let Omega, Sigma, P, A, B;
  pred A,B are_independent_respect_to P means
:: PROB_2:def 5
   P.(A /\ B) = P.A * P.B;
  let C;
  pred A,B,C are_independent_respect_to P means
:: PROB_2:def 6
   P.(A /\ B /\ C) = P.A * P.B * P.C &
        P.(A /\ B) = P.A * P.B &
        P.(A /\ C) = P.A * P.C &
        P.(B /\ C) = P.B * P.C;
end;

canceled 2;

theorem :: PROB_2:31
  A,B are_independent_respect_to P iff
      B,A are_independent_respect_to P;

theorem :: PROB_2:32
 (A,B,C are_independent_respect_to P iff
     (P.(A /\ B /\ C) = P.A * P.B * P.C &
      A,B are_independent_respect_to P &
      B,C are_independent_respect_to P &
      A,C are_independent_respect_to P));

theorem :: PROB_2:33
   A,B,C are_independent_respect_to P
      implies B,A,C are_independent_respect_to P;

theorem :: PROB_2:34
    A,B,C are_independent_respect_to P
      implies A,C,B are_independent_respect_to P;

theorem :: PROB_2:35
   for E being Event of Sigma st E = {} holds
 A, E are_independent_respect_to P;

theorem :: PROB_2:36
   A, [#] Sigma are_independent_respect_to P;

theorem :: PROB_2:37
 for A,B,P st A,B are_independent_respect_to P
  holds A,([#] Sigma \ B) are_independent_respect_to P;

theorem :: PROB_2:38
 A,B are_independent_respect_to P implies
  ([#] Sigma \ A),([#] Sigma \ B) are_independent_respect_to P;

theorem :: PROB_2:39
   for A,B,C,P st (A,B are_independent_respect_to P &
  A,C are_independent_respect_to P & B misses C) holds
  A,B \/ C are_independent_respect_to P;

theorem :: PROB_2:40
   for P,A,B st (A,B are_independent_respect_to P & P.A < 1 & P.B < 1)
       holds P.(A \/ B) < 1;

::
:: CONDITIONAL PROBABILITY
::

definition let Omega,Sigma,P,B;
  assume  0 < P.B;
  func P.|.B -> Probability of Sigma means
:: PROB_2:def 7
   for A holds it.A = P.(A /\ B)/P.B;
end;

canceled;

theorem :: PROB_2:42
 for P,B,A st 0 < P.B holds P.(A /\ B) = P.|.B.A * P.B;

theorem :: PROB_2:43
   for P,A,B,C st 0 < P.(A /\ B) holds
       P.(A /\ B /\ C) = P.A * P.|.A.B * P.|.(A /\ B).C;

theorem :: PROB_2:44
:: Total Probability Rule for Two Events
 for P,A,B,C st (C = B` & 0 < P.B & 0 < P.C ) holds
       P.A = P.|.B.A * P.B + P.|.C.A * P.C;

theorem :: PROB_2:45
:: Total Probability Rule for Three Events
 for P,A,A1,A2,A3 st (A1 misses A2 & A3 = (A1 \/ A2)` &
       0 < P.A1 & 0 < P.A2 & 0 < P.A3) holds
       P.A = (P.|.A1.A * P.A1) + (P.|.A2.A * P.A2) + (P.|.A3.A * P.A3);

theorem :: PROB_2:46
   for P,A,B st 0 < P.B holds
       (P.|.B.A = P.A iff A,B are_independent_respect_to P);

theorem :: PROB_2:47
   for P,A,B st (0 < P.B & P.B < 1 & P.|.B.A = P.|.([#] Sigma \ B).A) holds
       A,B are_independent_respect_to P;

theorem :: PROB_2:48
   for P,A,B st 0 < P.B holds (P.A + P.B - 1)/ P.B <= P.|.B.A;

theorem :: PROB_2:49
 for A,B,P st (0 < P.A & 0 < P.B) holds
  P.|.B.A = P.|.A.B * P.A / P.B;

theorem :: PROB_2:50
::Bayes' Theorem for Two Events
   for B,A1,A2,P st (0 < P.B & A2 = A1` & 0 < P.A1 & 0 < P.A2) holds
  P.|.B.A1 = (P.|.A1.B * P.A1) / (P.|.A1.B * P.A1 + P.|.A2.B * P.A2) &
   P.|.B.A2 = (P.|.A2.B * P.A2) / (P.|.A1.B * P.A1 + P.|.A2.B * P.A2);

theorem :: PROB_2:51
:: Bayes' Theorem for Three Events
   for B,A1,A2,A3,P st (0<P.B & 0<P.A1 & 0<P.A2 & 0<P.A3 &
                             A1 misses A2 & A3=(A1 \/ A2)`) holds
P.|.B.A1 = (P.|.A1.B * P.A1)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3) &
 P.|.B.A2 = (P.|.A2.B * P.A2)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3) &
P.|.B.A3 = (P.|.A3.B * P.A3)/((P.|.A1.B * P.A1 + P.|.A2.B * P.A2) + P.|.
A3.B * P.A3);

theorem :: PROB_2:52
   for A,B,P st 0 < P.B holds 1 - P.([#] Sigma \ A)/P.B <= P.|.B.A;

Back to top