environ vocabulary PBOOLE, FUNCT_1, PROB_1, RELAT_1, TARSKI, FINSEQ_1, BOOLE, HILBERT1, TREES_1, TREES_3, TREES_2, TREES_4, TREES_9, FUNCT_6, QC_LANG1, ZF_LANG, GRAPH_1, ZFMISC_1, SETFAM_1, FRAENKEL, PARTFUN1, FUNCT_4, CAT_1, HILBERT2, HAHNBAN; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0, NAT_1, PROB_1, RELAT_1, ORDINAL1, FUNCT_1, PARTFUN1, SETFAM_1, FINSEQ_1, FRAENKEL, CQC_LANG, FUNCT_4, FUNCT_6, PBOOLE, TREES_1, TREES_2, TREES_3, TREES_4, TREES_9, HILBERT1; constructors MSUALG_3, HILBERT1, FRAENKEL, CQC_LANG, NAT_1, TREES_9, PROB_1, MEMBERED; clusters SUBSET_1, RELSET_1, HILBERT1, FRAENKEL, TREES_2, TREES_3, FINSEQ_5, FUNCT_7, PRVECT_1, NAT_1, MEMBERED, NUMBERS, ORDINAL2; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: Preliminaries reserve X,x for set; theorem :: HILBERT2:1 for Z being set, M being ManySortedSet of Z st for x being set st x in Z holds M.x is ManySortedSet of x for f being Function st f = Union M holds dom f = union Z; theorem :: HILBERT2:2 for x,y being set, f,g being FinSequence st <*x*>^f = <*y*>^g holds f = g; theorem :: HILBERT2:3 <*x*> is FinSequence of X implies x in X; theorem :: HILBERT2:4 for X for f being FinSequence of X st f <> {} ex g being FinSequence of X, d being Element of X st f = g^<*d*>; reserve k,m,n for Nat, p,q,r,s,r',s' for Element of HP-WFF, T1,T2 for Tree; theorem :: HILBERT2:5 <*x*> in tree(T1,T2) iff x=0 or x=1; definition cluster {} -> Tree-yielding; end; scheme InTreeInd{T() -> Tree, P[set] }: for f being Element of T() holds P[f] provided P[<*>NAT] and for f being Element of T() st P[f] for n st f^<*n*> in T() holds P[f^<*n*>]; reserve T1,T2 for DecoratedTree; theorem :: HILBERT2:6 for x being set, T1, T2 holds (x-tree (T1,T2)).{} = x; theorem :: HILBERT2:7 x-tree(T1,T2).<*0*> = T1.{} & x-tree(T1,T2).<*1*> = T2.{}; theorem :: HILBERT2:8 x-tree(T1,T2)|<*0*> = T1 & x-tree(T1,T2)|<*1*> = T2; definition let x; let p be DTree-yielding non empty FinSequence; cluster x-tree p -> non root; end; definition let x; let T1 be DecoratedTree; cluster x-tree T1 -> non root; let T2 be DecoratedTree; cluster x-tree (T1,T2) -> non root; end; begin :: About the language definition let n; func prop n -> Element of HP-WFF equals :: HILBERT2:def 1 <*3+n*>; end; definition let D be set; redefine attr D is with_VERUM means :: HILBERT2:def 2 VERUM in D; attr D is with_propositional_variables means :: HILBERT2:def 3 for n holds prop n in D; end; definition let D be Subset of HP-WFF; redefine attr D is with_implication means :: HILBERT2:def 4 for p, q st p in D & q in D holds p => q in D; attr D is with_conjunction means :: HILBERT2:def 5 for p, q st p in D & q in D holds p '&' q in D; end; reserve t,t1 for FinSequence; definition let p; attr p is conjunctive means :: HILBERT2:def 6 ex r,s st p = r '&' s; attr p is conditional means :: HILBERT2:def 7 ex r,s st p = r => s; attr p is simple means :: HILBERT2:def 8 ex n st p = prop n; end; scheme HP_Ind { P[set] }: for r holds P[r] provided P[VERUM] and for n holds P[prop n] and for r,s st P[r] & P[s] holds P[r '&' s] & P[r => s]; theorem :: HILBERT2:9 p is conjunctive or p is conditional or p is simple or p = VERUM; theorem :: HILBERT2:10 len p >= 1; theorem :: HILBERT2:11 p.1 = 1 implies p is conditional; theorem :: HILBERT2:12 p.1 = 2 implies p is conjunctive; theorem :: HILBERT2:13 p.1 = 3+n implies p is simple; theorem :: HILBERT2:14 p.1 = 0 implies p = VERUM; theorem :: HILBERT2:15 len p < len(p '&' q) & len q < len(p '&' q); theorem :: HILBERT2:16 len p < len(p => q) & len q < len(p => q); theorem :: HILBERT2:17 p = q^t implies p = q; theorem :: HILBERT2:18 p^q = r^s implies p = r & q = s; theorem :: HILBERT2:19 p '&' q = r '&' s implies p = r & s = q; theorem :: HILBERT2:20 p => q = r => s implies p = r & s = q; theorem :: HILBERT2:21 prop n = prop m implies n = m; theorem :: HILBERT2:22 p '&' q <> r => s; theorem :: HILBERT2:23 p '&' q <> VERUM; theorem :: HILBERT2:24 p '&' q <> prop n; theorem :: HILBERT2:25 p => q <> VERUM; theorem :: HILBERT2:26 p => q <> prop n; theorem :: HILBERT2:27 p '&' q <> p & p '&' q <> q; theorem :: HILBERT2:28 p => q <> p & p => q <> q; theorem :: HILBERT2:29 VERUM <> prop n; begin :: Defining by structural induction scheme HP_MSSExL{V()->set,P(Nat)->set, C,I[Element of HP-WFF,Element of HP-WFF,set,set,set]}: ex M being ManySortedSet of HP-WFF st M.VERUM = V() & (for n holds M.prop n = P(n)) & for p,q holds C[p,q,M.p,M.q,M.(p '&' q)] & I[p,q,M.p,M.q,M.(p => q)] provided for p,q for a,b being set ex c being set st C[p,q,a,b,c] and for p,q for a,b being set ex d being set st I[p,q,a,b,d] and for p,q for a,b,c,d being set st C[p,q,a,b,c] & C[p,q,a,b,d] holds c = d and for p,q for a,b,c,d being set st I[p,q,a,b,c] & I[p,q,a,b,d] holds c = d; scheme HP_MSSLambda{V()->set,P(Nat)->set,C,I(set,set)->set}: ex M being ManySortedSet of HP-WFF st M.VERUM = V() & (for n holds M.prop n = P(n)) & for p,q holds M.(p '&' q) = C(M.p,M.q) & M.(p => q) = I(M.p,M.q); begin :: The tree of the subformulae definition func HP-Subformulae -> ManySortedSet of HP-WFF means :: HILBERT2:def 9 it.VERUM = root-tree VERUM & (for n holds it.prop n = root-tree prop n) & for p,q ex p',q' being DecoratedTree of HP-WFF st p' = it.p & q' = it.q & it.(p '&' q) = (p '&' q)-tree(p',q') & it.(p => q) = (p => q)-tree(p',q'); end; definition let p; func Subformulae p -> DecoratedTree of HP-WFF equals :: HILBERT2:def 10 HP-Subformulae.p; end; theorem :: HILBERT2:30 Subformulae VERUM = root-tree VERUM; theorem :: HILBERT2:31 Subformulae prop n = root-tree prop n; theorem :: HILBERT2:32 Subformulae(p '&' q) = (p '&' q)-tree(Subformulae p,Subformulae q); theorem :: HILBERT2:33 Subformulae(p => q) = (p => q)-tree(Subformulae p,Subformulae q); theorem :: HILBERT2:34 (Subformulae p).{} = p; theorem :: HILBERT2:35 for f being Element of dom Subformulae p holds (Subformulae p)|f = Subformulae((Subformulae p).f); theorem :: HILBERT2:36 p in Leaves Subformulae q implies p = VERUM or p is simple;