environ vocabulary INCPROJ, INCSP_1, AFF_2, ANALOAF, PARTFUN1, PROJRED1, FUNCT_1, RELAT_1, PROJRED2; notation TARSKI, SUBSET_1, RELAT_1, RELSET_1, INCSP_1, INCPROJ, PARTFUN1, FUNCT_1, PROJRED1; constructors PROJRED1, XBOOLE_0; clusters INCPROJ, FUNCT_1, RELSET_1, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve IPS for IncProjSp, z for POINT of IPS; definition let IPS; let A,B,C be LINE of IPS; pred A,B,C are_concurrent means :: PROJRED2:def 1 ex o being Element of the Points of IPS st o on A & o on B & o on C; end; definition let IPS; let Z be LINE of IPS; func CHAIN(Z) -> Subset of the Points of IPS equals :: PROJRED2:def 2 {z: z on Z}; end; reserve IPP for Desarguesian 2-dimensional IncProjSp, a,b,c,d,p,pp',q,o,o',o'',oo' for POINT of IPP, r,s,x,y,o1,o2 for POINT of IPP, O1,O2,O3,O4,A,B,C,O,Q,Q1,Q2,Q3,R,S,X for LINE of IPP; definition let IPP; mode Projection of IPP -> PartFunc of the Points of IPP,the Points of IPP means :: PROJRED2:def 3 ex a,A,B st not a on A & not a on B & it = IncProj(A,a,B); end; theorem :: PROJRED2:1 A=B or B=C or C=A implies A,B,C are_concurrent; theorem :: PROJRED2:2 A,B,C are_concurrent implies A,C,B are_concurrent & B,A,C are_concurrent & B,C,A are_concurrent & C,A,B are_concurrent & C,B,A are_concurrent; theorem :: PROJRED2:3 not o on A & not o on B & y on B implies ex x st x on A & IncProj (A,o,B).x = y; canceled; theorem :: PROJRED2:5 not o on A & not o on B implies dom IncProj(A,o,B) = CHAIN(A); theorem :: PROJRED2:6 not o on A & not o on B implies rng IncProj(A,o,B) = CHAIN(B); theorem :: PROJRED2:7 for x being set holds x in CHAIN(A) iff ex a st x=a & a on A; theorem :: PROJRED2:8 not o on A & not o on B implies IncProj(A,o,B) is one-to-one; theorem :: PROJRED2:9 not o on A & not o on B implies IncProj(A,o,B)" = IncProj(B,o,A); theorem :: PROJRED2:10 for f being Projection of IPP holds f" is Projection of IPP; theorem :: PROJRED2:11 not o on A implies IncProj(A,o,A) = id CHAIN(A); theorem :: PROJRED2:12 id CHAIN(A) is Projection of IPP; theorem :: PROJRED2:13 not o on A & not o on B & not o on C implies IncProj(C,o,B)*IncProj(A,o,C) = IncProj(A,o,B); theorem :: PROJRED2:14 not o1 on O1 & not o1 on O2 & not o2 on O2 & not o2 on O3 & O1,O2,O3 are_concurrent & O1<>O3 implies ex o st not o on O1 & not o on O3 & IncProj(O2,o2,O3)*IncProj(O1,o1,O2) = IncProj(O1,o,O3); theorem :: PROJRED2:15 not a on A & not b on B & not a on C & not b on C & not A,B,C are_concurrent & c on A & c on C & c on Q & not b on Q & A<>Q & a<>b & b<>q & a on O & b on O & not B,C,O are_concurrent & d on C & d on B & a on O1 & d on O1 & p on A & p on O1 & q on O & q on O2 & p on O2 & pp' on O2 & d on O3 & b on O3 & pp' on O3 & pp' on Q & Q<>C & q<>a & not q on A & not q on Q implies IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,b,B)*IncProj(A,q,Q); theorem :: PROJRED2:16 not a on A & not a on C & not b on B & not b on C & not b on Q & not A,B,C are_concurrent & a<>b & b<>q & A<>Q & c,o on A & o,o'',d on B & c,d,o' on C & a,b,d on O & c,oo' on Q & a,o,o' on O1 & b,o',oo' on O2 & o,oo',q on O3 & q on O implies IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,b,B)*IncProj(A,q,Q); theorem :: PROJRED2:17 not a on A & not a on C & not b on B & not b on C & not b on Q & not A,B,C are_concurrent & not B,C,O are_concurrent & A<>Q & Q<>C & a<>b & c,p on A & d on B & c,d on C & a,b,q on O & c,pp' on Q & a,d,p on O1 & q,p,pp' on O2 & b,d,pp' on O3 implies q<>a & q<>b & not q on A & not q on Q; theorem :: PROJRED2:18 not a on A & not a on C & not b on B & not b on C & not b on Q & not A,B,C are_concurrent & a<>b & A<>Q & c,o on A & o,o'',d on B & c,d,o' on C & a,b,d on O & c,oo' on Q & a,o,o' on O1 & b,o',oo' on O2 & o,oo',q on O3 & q on O implies not q on A & not q on Q & b<>q; theorem :: PROJRED2:19 not a on A & not a on C & not b on B & not b on C & not q on A & not A,B,C are_concurrent & not B,C,O are_concurrent & a<>b & b<>q & q<>a & c,p on A & d on B & c,d on C & a,b,q on O & c,pp' on Q & a,d,p on O1 & q,p,pp' on O2 & b,d,pp' on O3 implies Q<>A & Q<>C & not q on Q & not b on Q; theorem :: PROJRED2:20 not a on A & not a on C & not b on B & not b on C & not q on A & not A,B,C are_concurrent & a<>b & b<>q & c,o on A & o,o'',d on B & c,d,o' on C & a,b,d on O & c,oo' on Q & a,o,o' on O1 & b,o',oo' on O2 & o,oo',q on O3 & q on O implies not b on Q & not q on Q & A<>Q; theorem :: PROJRED2:21 not a on A & not b on B & not a on C & not b on C & not A,B,C are_concurrent & A,C,Q are_concurrent & not b on Q & A<>Q & a<>b & a on O & b on O implies ex q st q on O & not q on A & not q on Q & IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,b,B)*IncProj(A,q,Q); theorem :: PROJRED2:22 not a on A & not b on B & not a on C & not b on C & not A,B,C are_concurrent & B,C,Q are_concurrent & not a on Q & B<>Q & a<>b & a on O & b on O implies ex q st q on O & not q on B & not q on Q & IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,q,B)*IncProj(A,a,Q); theorem :: PROJRED2:23 not a on A & not b on B & not a on C & not b on C & not a on B & not b on A & c on A & c on C & d on B & d on C & a on S & d on S & c on R & b on R & s on A & s on S & r on B & r on R & s on Q & r on Q & not A,B,C are_concurrent implies IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,a,B)*IncProj(A,b,Q); theorem :: PROJRED2:24 not a on A & not b on B & not a on C & not b on C & a<>b & a on O & b on O & q on O & not q on A & q<>b & not A,B,C are_concurrent implies ex Q st A,C,Q are_concurrent & not b on Q & not q on Q & IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,b,B)* IncProj(A,q,Q); theorem :: PROJRED2:25 not a on A & not b on B & not a on C & not b on C & a<>b & a on O & b on O & q on O & not q on B & q<>a & not A,B,C are_concurrent implies ex Q st B,C,Q are_concurrent & not a on Q & not q on Q & IncProj(C,b,B)*IncProj(A,a,C) = IncProj(Q,q,B)* IncProj(A,a,Q);