environ vocabulary RELAT_1, FUNCT_3, FUNCT_1, SQUARE_1, FUZZY_1, BOOLE, FUZZY_3, FUNCT_2; notation XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, RELSET_1, FUNCT_2, RFUNCT_1, FUZZY_1; constructors SEQ_1, RFUNCT_1, FUZZY_2, RCOMP_1, XCMPLX_0, MEMBERED; clusters SUBSET_1, MEMBERED; begin reserve C1,C2 for non empty set; definition let C be non empty set; cluster -> quasi_total Membership_Func of C; end; definition let C1,C2 be non empty set; mode RMembership_Func of C1,C2 is Membership_Func of [:C1,C2:]; end; definition let C1,C2 be non empty set; let h be RMembership_Func of C1,C2; mode FuzzyRelation of C1,C2,h is FuzzySet of [:C1,C2:],h; end; reserve f,g for RMembership_Func of C1,C2; begin :: Empty Fuzzy Set and Universal Fuzzy Set definition let C1,C2 be non empty set; mode Zero_Relation of C1,C2 is Empty_FuzzySet of [:C1,C2:]; mode Universe_Relation of C1,C2 is Universal_FuzzySet of [:C1,C2:]; end; reserve X for Universe_Relation of C1,C2; reserve O for Zero_Relation of C1,C2; definition let C1,C2 be non empty set; func Zmf(C1,C2) -> RMembership_Func of C1,C2 equals :: FUZZY_3:def 1 chi({},[:C1,C2:]); func Umf(C1,C2) -> RMembership_Func of C1,C2 equals :: FUZZY_3:def 2 chi([:C1,C2:],[:C1,C2:]); end; canceled 44; theorem :: FUZZY_3:45 Zmf(C1,C2) = EMF [:C1,C2:]; theorem :: FUZZY_3:46 Umf(C1,C2) = UMF [:C1,C2:]; theorem :: FUZZY_3:47 O is FuzzyRelation of C1,C2,Zmf(C1,C2); theorem :: FUZZY_3:48 X is FuzzyRelation of C1,C2,Umf(C1,C2); canceled 3; theorem :: FUZZY_3:52 for x be Element of [:C1,C2:],h be RMembership_Func of C1,C2 holds (Zmf(C1,C2)).x <= h.x & h.x <= (Umf(C1,C2)).x; theorem :: FUZZY_3:53 max(f,Umf(C1,C2)) = Umf(C1,C2) & min(f,Umf(C1,C2)) = f & max(f,Zmf(C1,C2)) = f & min(f,Zmf(C1,C2)) = Zmf(C1,C2); canceled 7; theorem :: FUZZY_3:61 1_minus(Zmf(C1,C2)) = Umf(C1,C2) & 1_minus(Umf(C1,C2)) = Zmf(C1,C2); canceled 59; theorem :: FUZZY_3:121 min(f,1_minus g) = Zmf(C1,C2) implies for c being Element of [:C1,C2:] holds f.c <= g.c; canceled; theorem :: FUZZY_3:123 min(f,g) = Zmf(C1,C2) implies min(f,1_minus g) = f;