Copyright (c) 2000 Association of Mizar Users
environ vocabulary RELAT_1, FUNCT_3, FUNCT_1, SQUARE_1, FUZZY_1, BOOLE, FUZZY_3, FUNCT_2; notation XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, RELSET_1, FUNCT_2, RFUNCT_1, FUZZY_1; constructors SEQ_1, RFUNCT_1, FUZZY_2, RCOMP_1, XCMPLX_0, MEMBERED; clusters SUBSET_1, MEMBERED; theorems FUZZY_1, FUNCT_2, FUZZY_2; begin reserve C1,C2 for non empty set; definition let C be non empty set; cluster -> quasi_total Membership_Func of C; coherence proof let f be Membership_Func of C; dom f = C by FUZZY_1:def 1; hence thesis by FUNCT_2:def 1; end; end; definition let C1,C2 be non empty set; mode RMembership_Func of C1,C2 is Membership_Func of [:C1,C2:]; end; definition let C1,C2 be non empty set; let h be RMembership_Func of C1,C2; mode FuzzyRelation of C1,C2,h is FuzzySet of [:C1,C2:],h; end; reserve f,g for RMembership_Func of C1,C2; begin :: Empty Fuzzy Set and Universal Fuzzy Set definition let C1,C2 be non empty set; mode Zero_Relation of C1,C2 is Empty_FuzzySet of [:C1,C2:]; mode Universe_Relation of C1,C2 is Universal_FuzzySet of [:C1,C2:]; end; reserve X for Universe_Relation of C1,C2; reserve O for Zero_Relation of C1,C2; definition let C1,C2 be non empty set; func Zmf(C1,C2) -> RMembership_Func of C1,C2 equals :Def1: chi({},[:C1,C2:]); correctness by FUZZY_1:23; func Umf(C1,C2) -> RMembership_Func of C1,C2 equals :Def2: chi([:C1,C2:],[:C1,C2:]); correctness by FUZZY_1:2; end; canceled 44; theorem Th45: Zmf(C1,C2) = EMF [:C1,C2:] proof thus Zmf(C1,C2) = chi({},[:C1,C2:]) by Def1 .= EMF [:C1,C2:] by FUZZY_1:def 13; end; theorem Th46: Umf(C1,C2) = UMF [:C1,C2:] proof thus Umf(C1,C2) = chi([:C1,C2:],[:C1,C2:]) by Def2 .= UMF [:C1,C2:] by FUZZY_1:def 14; end; theorem O is FuzzyRelation of C1,C2,Zmf(C1,C2) by Th45; theorem X is FuzzyRelation of C1,C2,Umf(C1,C2) by Th46; canceled 3; theorem for x be Element of [:C1,C2:],h be RMembership_Func of C1,C2 holds (Zmf(C1,C2)).x <= h.x & h.x <= (Umf(C1,C2)).x proof Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46; hence thesis by FUZZY_1:31; end; theorem max(f,Umf(C1,C2)) = Umf(C1,C2) & min(f,Umf(C1,C2)) = f & max(f,Zmf(C1,C2)) = f & min(f,Zmf(C1,C2)) = Zmf(C1,C2) proof Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46; hence thesis by FUZZY_1:32; end; canceled 7; theorem 1_minus(Zmf(C1,C2)) = Umf(C1,C2) & 1_minus(Umf(C1,C2)) = Zmf(C1,C2) proof Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46; hence thesis by FUZZY_1:62; end; canceled 59; theorem min(f,1_minus g) = Zmf(C1,C2) implies for c being Element of [:C1,C2:] holds f.c <= g.c proof Zmf(C1,C2) = EMF [:C1,C2:] by Th45; hence thesis by FUZZY_2:59; end; canceled; theorem min(f,g) = Zmf(C1,C2) implies min(f,1_minus g) = f proof Zmf(C1,C2) = EMF [:C1,C2:] by Th45; hence thesis by FUZZY_2:61; end;