environ vocabulary RLVECT_1, VECTSP_1, ARYTM_1, FUNCSDOM, VECTSP_2, RELAT_1, MOD_1, BINOP_1, LATTICES, ALGSTR_2; notation STRUCT_0, RLVECT_1, VECTSP_1, FUNCSDOM, VECTSP_2; constructors VECTSP_2, XBOOLE_0; clusters VECTSP_1, VECTSP_2, ZFMISC_1, XBOOLE_0; begin definition mode AddGroup is add-associative right_zeroed right_complementable (non empty LoopStr); end; canceled 12; theorem :: MOD_1:13 for K be add-associative right_zeroed right_complementable right-distributive right_unital (non empty doubleLoopStr) for a be Element of K holds a * (- 1_ K) = - a; theorem :: MOD_1:14 for K be add-associative right_zeroed right_complementable left-distributive left_unital (non empty doubleLoopStr) for a be Element of K holds (- 1_ K) * a = - a; reserve R for Abelian add-associative right_zeroed right_complementable associative left_unital right_unital distributive (non empty doubleLoopStr), F for non degenerated Field-like Ring, x for Scalar of F, V for add-associative right_zeroed right_complementable VectSp-like (non empty VectSpStr over F), v for Vector of V; canceled 10; theorem :: MOD_1:25 x*v = 0.V iff x = 0.F or v = 0.V; theorem :: MOD_1:26 x<>0.F implies x"*(x*v)=v; reserve V for add-associative right_zeroed right_complementable RightMod-like (non empty RightModStr over R); reserve x for Scalar of R; reserve v,w for Vector of V; canceled 10; theorem :: MOD_1:37 v*(0.R) = 0.V & v*(-1_ R) = -v & (0.V)*x = 0.V; theorem :: MOD_1:38 -v*x = v*(-x) & w - v*x = w + v*(-x); theorem :: MOD_1:39 (-v)*x = -v*x; theorem :: MOD_1:40 (v - w)*x = v*x - w*x; reserve F for non degenerated Field-like Ring; reserve x for Scalar of F; reserve V for add-associative right_zeroed right_complementable RightMod-like (non empty RightModStr over F); reserve v for Vector of V; canceled; theorem :: MOD_1:42 v*x = 0.V iff x = 0.F or v = 0.V; theorem :: MOD_1:43 x<>0.F implies (v*x)*x"=v;