environ vocabulary DIRAF, VECTSP_1, ANALOAF, PASCH, FUNCT_2, TRANSGEO, FUNCT_1, AFF_2, INCSP_1, AFF_1, RELAT_1; notation PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, TRANSGEO; constructors AFF_1, AFF_2, TRANSGEO, MEMBERED, PARTFUN1, RELAT_2, XBOOLE_0; clusters STRUCT_0, RELSET_1, FUNCT_2, MEMBERED, ZFMISC_1, PARTFUN1, FUNCT_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve AS for AffinSpace, a,b,c,d,p,q,r,s,x for Element of AS; definition let AS; attr AS is Fanoian means :: TRANSLAC:def 1 for a,b,c,d st a,b // c,d & a,c // b,d & a,d // b,c holds LIN a,b,c; synonym AS satisfies_Fano; end; canceled; theorem :: TRANSLAC:2 (ex a,b,c st LIN a,b,c & a<>b & a<>c & b<>c) implies (for p,q st p<>q holds (ex r st LIN p,q,r & p<>r & q<>r)); reserve AFP for AffinPlane, a,a',b,b',c,c',d,p,p',q,q',r,x,x',y,y',z for Element of AFP, A,C,P for Subset of AFP, f,g,h,f1,f2 for Permutation of the carrier of AFP; canceled; theorem :: TRANSLAC:4 (AFP satisfies_Fano & a,b // c,d & a,c // b,d & not LIN a,b,c) implies ex p st LIN b,c,p & LIN a,d,p ; theorem :: TRANSLAC:5 f is_Tr & not LIN a,f.a,x & a,f.a // x,y & a,x // f.a,y implies y=f.x; theorem :: TRANSLAC:6 AFP satisfies_des iff (for a,a',b,c,b',c' st not LIN a,a',b & not LIN a,a',c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' holds b,c // b',c'); theorem :: TRANSLAC:7 ex f st f is_Tr & f.a=a; theorem :: TRANSLAC:8 (for p,q,r st p<>q & LIN p,q,r holds r = p or r = q) & a,b // p,q & a,p // b,q & not LIN a,b,p implies a,q // b,p; theorem :: TRANSLAC:9 AFP satisfies_des implies ex f st f is_Tr & f.a=b; theorem :: TRANSLAC:10 (for a,b ex f st f is_Tr & f.a=b) implies AFP satisfies_des; theorem :: TRANSLAC:11 f is_Tr & g is_Tr & not LIN a,f.a,g.a implies f*g=g*f; theorem :: TRANSLAC:12 AFP satisfies_des & f is_Tr & g is_Tr implies f*g=g*f; theorem :: TRANSLAC:13 f is_Tr & g is_Tr & p,f.p // p,g.p implies p,f.p // p,(f*g).p; theorem :: TRANSLAC:14 AFP satisfies_Fano & AFP satisfies_des & f is_Tr implies ex g st g is_Tr & g*g=f; theorem :: TRANSLAC:15 AFP satisfies_Fano & f is_Tr & f*f=id the carrier of AFP implies f=id the carrier of AFP; theorem :: TRANSLAC:16 AFP satisfies_des & AFP satisfies_Fano & g is_Tr & f1 is_Tr & f2 is_Tr & g=f1*f1 & g=f2*f2 implies f1=f2;