environ vocabulary CQC_LANG, QC_LANG1, FINSEQ_1, CQC_THE1, QMAX_1, ZF_LANG, BOOLE, PRE_TOPC, FUNCT_1, MCART_1; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, NAT_1, FINSEQ_1, FUNCT_1, MCART_1, DOMAIN_1, QC_LANG1, QC_LANG2, CQC_LANG, CQC_THE1; constructors DOMAIN_1, CQC_THE1, XREAL_0, XCMPLX_0, MEMBERED, XBOOLE_0; clusters RELSET_1, CQC_LANG, MEMBERED, ZFMISC_1, XBOOLE_0; requirements NUMERALS, SUBSET, BOOLE; begin reserve X,T for Subset of CQC-WFF; reserve F,G,H,p,q,r,t for Element of CQC-WFF; reserve s,h for QC-formula; reserve x,y for bound_QC-variable; reserve f for FinSequence of [:CQC-WFF,Proof_Step_Kinds:]; reserve i,j,k,n for Nat; theorem :: CQC_THE2:1 |- p => (q => r) implies |- (p '&' q) => r; theorem :: CQC_THE2:2 |- p => (q => r) implies |- (q '&' p) => r; theorem :: CQC_THE2:3 |- (p '&' q) => r implies |- p => (q => r); theorem :: CQC_THE2:4 |- (p '&' q) => r implies |- q => (p => r); ::------------------------------------------------ theorem :: CQC_THE2:5 y in still_not-bound_in All(x,s) iff y in still_not-bound_in s & y <> x; theorem :: CQC_THE2:6 y in still_not-bound_in Ex(x,s) iff y in still_not-bound_in s & y <> x; theorem :: CQC_THE2:7 y in still_not-bound_in s => h iff y in still_not-bound_in s or y in still_not-bound_in h; canceled; theorem :: CQC_THE2:9 y in still_not-bound_in s '&' h iff y in still_not-bound_in s or y in still_not-bound_in h; theorem :: CQC_THE2:10 y in still_not-bound_in s 'or' h iff y in still_not-bound_in s or y in still_not-bound_in h; theorem :: CQC_THE2:11 not x in still_not-bound_in All(x,y,s) & not y in still_not-bound_in All(x,y,s); theorem :: CQC_THE2:12 not x in still_not-bound_in Ex(x,y,s) & not y in still_not-bound_in Ex(x,y,s); canceled; theorem :: CQC_THE2:14 (s => h).x = (s.x) => (h.x); theorem :: CQC_THE2:15 (s 'or' h).x = (s.x) 'or' (h.x); canceled; theorem :: CQC_THE2:17 x<>y implies (Ex(x,p)).y = Ex(x,p.y); ::--------------------------------------------------------- theorem :: CQC_THE2:18 |- p => Ex(x,p); theorem :: CQC_THE2:19 |- p implies |- Ex(x,p); theorem :: CQC_THE2:20 |- All(x,p) => Ex(x,p); theorem :: CQC_THE2:21 |- All(x,p) => Ex(y,p); theorem :: CQC_THE2:22 |- p => q & not x in still_not-bound_in q implies |- Ex(x,p) => q; theorem :: CQC_THE2:23 not x in still_not-bound_in p implies |- Ex(x,p) => p; theorem :: CQC_THE2:24 not x in still_not-bound_in p & |- Ex(x,p) implies |- p; theorem :: CQC_THE2:25 p=h.x & q=h.y & not y in still_not-bound_in h implies |- p => Ex(y,q); theorem :: CQC_THE2:26 |- p implies |- All(x,p); theorem :: CQC_THE2:27 not x in still_not-bound_in p implies |- p => All(x,p); theorem :: CQC_THE2:28 p=h.x & q=h.y & not x in still_not-bound_in h implies |- All(x,p) => q; theorem :: CQC_THE2:29 not y in still_not-bound_in p implies |- All(x,p) => All(y,p); theorem :: CQC_THE2:30 p=h.x & q=h.y & not x in still_not-bound_in h & not y in still_not-bound_in p implies |- All(x,p) => All(y,q); theorem :: CQC_THE2:31 not x in still_not-bound_in p implies |- Ex(x,p) => Ex(y,p); theorem :: CQC_THE2:32 p=h.x & q=h.y & not x in still_not-bound_in q & not y in still_not-bound_in h implies |- Ex(x,p) => Ex(y,q); canceled; theorem :: CQC_THE2:34 |- All(x,p => q) => (All(x,p) => All(x,q)); theorem :: CQC_THE2:35 |- All(x,p => q) implies |- All(x,p) => All(x,q); theorem :: CQC_THE2:36 |- All(x,p <=> q) => (All(x,p) <=> All(x,q)); theorem :: CQC_THE2:37 |- All(x,p <=> q) implies |- All(x,p) <=> All(x,q); theorem :: CQC_THE2:38 |- All(x,p => q) => (Ex(x,p) => Ex(x,q)); theorem :: CQC_THE2:39 |- All(x,p => q) implies |- Ex(x,p) => Ex(x,q); theorem :: CQC_THE2:40 |- All(x,p '&' q) => (All(x,p) '&' All(x,q)) & |- (All(x,p) '&' All(x,q)) => All(x,p '&' q); theorem :: CQC_THE2:41 |- All(x,p '&' q) <=> (All(x,p) '&' All(x,q)); theorem :: CQC_THE2:42 |- All(x,p '&' q) iff |- All(x,p) '&' All(x,q); theorem :: CQC_THE2:43 |- (All(x,p) 'or' All(x,q)) => All(x,p 'or' q); theorem :: CQC_THE2:44 |- Ex(x,p 'or' q) => (Ex(x,p) 'or' Ex(x,q)) & |- (Ex(x,p) 'or' Ex(x,q)) => Ex(x,p 'or' q); theorem :: CQC_THE2:45 |- Ex(x,p 'or' q) <=> (Ex(x,p) 'or' Ex(x,q)); theorem :: CQC_THE2:46 |- Ex(x,p 'or' q) iff |- Ex(x,p) 'or' Ex(x,q); theorem :: CQC_THE2:47 |- Ex(x,p '&' q) => (Ex(x,p) '&' Ex(x,q)); theorem :: CQC_THE2:48 |- Ex(x,p '&' q) implies |- Ex(x,p) '&' Ex(x,q); theorem :: CQC_THE2:49 |- All(x,'not' 'not' p) => All(x,p) & |- All(x,p) => All(x,'not' 'not' p); theorem :: CQC_THE2:50 |- All(x,'not' 'not' p) <=> All(x,p); theorem :: CQC_THE2:51 |- Ex(x,'not' 'not' p) => Ex(x,p) & |- Ex(x,p) => Ex(x,'not' 'not' p); theorem :: CQC_THE2:52 |- Ex(x,'not' 'not' p) <=> Ex(x,p); theorem :: CQC_THE2:53 |- 'not' Ex(x,'not' p) => All(x,p) & |- All(x,p) => 'not' Ex(x,'not' p); theorem :: CQC_THE2:54 |- 'not' Ex(x,'not' p) <=> All(x,p); theorem :: CQC_THE2:55 |- 'not' All(x,p) => Ex(x,'not' p) & |- Ex(x,'not' p) => 'not' All(x,p); theorem :: CQC_THE2:56 |- 'not' All(x,p) <=> Ex(x,'not' p); theorem :: CQC_THE2:57 |- 'not' Ex(x,p) => All(x,'not' p) & |- All(x,'not' p) => 'not' Ex(x, p ); theorem :: CQC_THE2:58 |- All(x,'not' p) <=> 'not' Ex(x,p); theorem :: CQC_THE2:59 |- All(x,All(y,p)) => All(y,All(x,p)) & |- All(x,y,p) => All(y,x,p); theorem :: CQC_THE2:60 p=h.x & q=h.y & not y in still_not-bound_in h implies |- All(x,All(y,q)) => All(x,p); theorem :: CQC_THE2:61 |- Ex(x,Ex(y,p)) => Ex(y,Ex(x,p)) & |- Ex(x,y,p) => Ex(y,x,p); theorem :: CQC_THE2:62 p=h.x & q=h.y & not y in still_not-bound_in h implies |- Ex(x,p) => Ex(x,y,q); theorem :: CQC_THE2:63 |- Ex(x,All(y,p)) => All(y,Ex(x,p)); theorem :: CQC_THE2:64 |- Ex(x,p <=> p); theorem :: CQC_THE2:65 |- Ex(x,p => q) => (All(x,p) => Ex(x,q)) & |- (All(x,p) => Ex(x,q)) => Ex(x,p => q); theorem :: CQC_THE2:66 |- Ex(x,p => q) <=> (All(x,p) => Ex(x,q)); theorem :: CQC_THE2:67 |- Ex(x,p => q) iff |- All(x,p) => Ex(x,q); theorem :: CQC_THE2:68 |- All(x,p '&' q) => (p '&' All(x,q)); theorem :: CQC_THE2:69 |- All(x,p '&' q) => (All(x,p) '&' q); theorem :: CQC_THE2:70 not x in still_not-bound_in p implies |- (p '&' All(x,q)) => All(x,p '&' q); theorem :: CQC_THE2:71 not x in still_not-bound_in p & |- p '&' All(x,q) implies |- All(x,p '&' q); theorem :: CQC_THE2:72 not x in still_not-bound_in p implies |- (p 'or' All(x,q)) => All(x,p 'or' q) & |- All(x,p 'or' q) => (p 'or' All(x,q)); theorem :: CQC_THE2:73 not x in still_not-bound_in p implies |- (p 'or' All(x,q)) <=> All(x,p 'or' q) ; theorem :: CQC_THE2:74 not x in still_not-bound_in p implies (|- p 'or' All(x,q) iff |- All(x,p 'or' q)); theorem :: CQC_THE2:75 not x in still_not-bound_in p implies |- (p '&' Ex(x,q)) => Ex(x,p '&' q) & |- Ex(x,p '&' q) => (p '&' Ex(x,q)); theorem :: CQC_THE2:76 not x in still_not-bound_in p implies |- (p '&' Ex(x,q)) <=> Ex(x,p '&' q); theorem :: CQC_THE2:77 not x in still_not-bound_in p implies (|- p '&' Ex(x,q) iff |- Ex(x,p '&' q) ); theorem :: CQC_THE2:78 not x in still_not-bound_in p implies |- All(x,p => q) => (p => All(x,q)) & |- (p => All(x,q)) => All(x,p => q); theorem :: CQC_THE2:79 not x in still_not-bound_in p implies |- (p => All(x,q)) <=> All(x,p => q); theorem :: CQC_THE2:80 not x in still_not-bound_in p implies (|- All(x,p => q) iff |- p => All(x,q) ); theorem :: CQC_THE2:81 not x in still_not-bound_in q implies |- Ex(x,p => q) => (All(x,p) => q); theorem :: CQC_THE2:82 |- (All(x,p) => q) => Ex(x,p => q); theorem :: CQC_THE2:83 not x in still_not-bound_in q implies (|- All(x,p) => q iff |- Ex(x,p => q)) ; theorem :: CQC_THE2:84 not x in still_not-bound_in q implies |- (Ex(x,p) => q) => All(x,p => q) & |- All(x,p => q) => (Ex(x,p) => q); theorem :: CQC_THE2:85 not x in still_not-bound_in q implies |- (Ex(x,p) => q) <=> All(x,p => q); theorem :: CQC_THE2:86 not x in still_not-bound_in q implies (|- Ex(x,p) => q iff |- All(x,p => q)) ; theorem :: CQC_THE2:87 not x in still_not-bound_in p implies |- Ex(x,p => q) => (p => Ex(x,q)); theorem :: CQC_THE2:88 |- (p => Ex(x,q)) => Ex(x,p => q); theorem :: CQC_THE2:89 not x in still_not-bound_in p implies |- (p => Ex(x,q)) <=> Ex(x,p => q); theorem :: CQC_THE2:90 not x in still_not-bound_in p implies (|- p => Ex(x,q) iff |- Ex(x,p => q)); theorem :: CQC_THE2:91 {p} |- p; theorem :: CQC_THE2:92 Cn({p} \/ {q}) = Cn({p '&' q}); theorem :: CQC_THE2:93 {p,q} |- r iff {p '&' q} |- r; theorem :: CQC_THE2:94 X|- p implies X|- All(x,p); theorem :: CQC_THE2:95 not x in still_not-bound_in p implies X|- All(x,p => q) => (p => All(x,q)); :: Deduction Theorem theorem :: CQC_THE2:96 F is closed & (X \/ {F})|- G implies X |- F => G;