Copyright (c) 1990 Association of Mizar Users
environ vocabulary CQC_LANG, QC_LANG1, FINSEQ_1, CQC_THE1, QMAX_1, ZF_LANG, BOOLE, PRE_TOPC, FUNCT_1, MCART_1; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, NAT_1, FINSEQ_1, FUNCT_1, MCART_1, DOMAIN_1, QC_LANG1, QC_LANG2, CQC_LANG, CQC_THE1; constructors DOMAIN_1, CQC_THE1, XREAL_0, XCMPLX_0, MEMBERED, XBOOLE_0; clusters RELSET_1, CQC_LANG, MEMBERED, ZFMISC_1, XBOOLE_0; requirements NUMERALS, SUBSET, BOOLE; definitions CQC_THE1; theorems AXIOMS, TARSKI, ZFMISC_1, LUKASI_1, CQC_LANG, CQC_THE1, ENUMSET1, QC_LANG1, QC_LANG2, QC_LANG3, PROCAL_1, XBOOLE_0, XBOOLE_1; schemes NAT_1; begin reserve X,T for Subset of CQC-WFF; reserve F,G,H,p,q,r,t for Element of CQC-WFF; reserve s,h for QC-formula; reserve x,y for bound_QC-variable; reserve f for FinSequence of [:CQC-WFF,Proof_Step_Kinds:]; reserve i,j,k,n for Nat; theorem Th1: |- p => (q => r) implies |- (p '&' q) => r proof assume A1: p => (q => r) in TAUT; (p => (q => r)) => ((p '&' q) => r) in TAUT by PROCAL_1:32; hence (p '&' q) => r in TAUT by A1,CQC_THE1:82; end; theorem Th2: |- p => (q => r) implies |- (q '&' p) => r proof assume p => (q => r) in TAUT; then |- p => (q => r) by CQC_THE1:def 11; then |- (p '&' q) => r by Th1; then (p '&' q) => r in TAUT & q '&' p => p '&' q in TAUT by CQC_THE1:81,def 11; hence (q '&' p) => r in TAUT by LUKASI_1:3; end; theorem Th3: |- (p '&' q) => r implies |- p => (q => r) proof assume A1: (p '&' q) => r in TAUT; ((p '&' q) => r) => (p => (q => r)) in TAUT by PROCAL_1:31; hence (p => (q => r)) in TAUT by A1,CQC_THE1:82; end; theorem Th4: |- (p '&' q) => r implies |- q => (p => r) proof assume A1: (p '&' q) => r in TAUT; q '&' p => p '&' q in TAUT by CQC_THE1:81; then q '&' p => r in TAUT by A1,LUKASI_1:3; then |- q '&' p => r by CQC_THE1:def 11; then |- q => (p => r) by Th3; hence q => (p => r) in TAUT by CQC_THE1:def 11; end; Lm1: |- (p '&' q) => p & |- (p '&' q) => q proof thus (p '&' q) => p in TAUT & (p '&' q) => q in TAUT by PROCAL_1:19,21; end; Lm2: |- p '&' q implies |- p & |- q proof assume A1: |- p '&' q; |- (p '&' q) => p & |- (p '&' q) => q by Lm1; hence thesis by A1,CQC_THE1:104; end; Lm3: |- p => q & |- p => r implies |- p => q '&' r proof assume p => q in TAUT & p => r in TAUT; hence p => q '&' r in TAUT by PROCAL_1:52; end; Lm4: |- p => q & |- r => t implies |- p 'or' r => q 'or' t proof assume p => q in TAUT & r => t in TAUT; hence p 'or' r => q 'or' t in TAUT by PROCAL_1:57; end; Lm5: |- p => q & |- r => t implies |- p '&' r => q '&' t proof assume p => q in TAUT & r => t in TAUT; hence p '&' r => q '&' t in TAUT by PROCAL_1:56; end; Lm6: |- p => p 'or' q & |- p => q 'or' p proof thus p => p 'or' q in TAUT & p => q 'or' p in TAUT by PROCAL_1:3,4; end; Lm7: |- p => q & |- r => q implies |- (p 'or' r) => q proof assume p => q in TAUT & r => q in TAUT; hence (p 'or' r) => q in TAUT by PROCAL_1:53; end; Lm8: |- p & |- q implies |- p '&' q proof assume p in TAUT & q in TAUT; hence p '&' q in TAUT by PROCAL_1:47; end; Lm9: |- p => q implies |- r '&' p => r '&' q proof assume p => q in TAUT; hence r '&' p => r '&' q in TAUT by PROCAL_1:50; end; Lm10: |- p => q implies |- p 'or' r => q 'or' r proof assume p => q in TAUT; hence p 'or' r => q 'or' r in TAUT by PROCAL_1:48; end; Lm11: |- p 'or' q => ('not' p => q) proof thus ( p 'or' q ) => ( 'not' p => q ) in TAUT by PROCAL_1:5; end; Lm12: |- ('not' p => q) => (p 'or' q) proof A1: ('not' p => q) => ('not' 'not' p 'or' q) in TAUT by PROCAL_1:14; 'not' 'not' p => p in TAUT by LUKASI_1:25; then 'not' 'not' p 'or' q => p 'or' q in TAUT by PROCAL_1:48; hence ('not' p => q) => (p 'or' q) in TAUT by A1,LUKASI_1:3; end; Lm13: |- p <=> p proof |- p => p by LUKASI_1:44; then |- (p => p) '&' (p => p) by Lm8; hence thesis by QC_LANG2:def 4; end; Lm14: |- p => q & |- q => p iff |- p <=> q proof thus |- p => q & |- q => p implies |- p <=> q proof assume |- p => q & |- q => p; then |- (p => q) '&' (q => p) by Lm8; hence thesis by QC_LANG2:def 4; end; assume |- p <=> q; then |- (p => q) '&' (q => p) by QC_LANG2:def 4; hence thesis by Lm2; end; Lm15: |- p <=> q implies (|- p iff |- q) proof assume A1: p <=> q in TAUT; (p <=> q) => (p => q) in TAUT & (p <=> q) => (q => p) in TAUT by PROCAL_1:23,24; then A2: p => q in TAUT & q => p in TAUT by A1,CQC_THE1:82; thus |- p implies |- q proof assume p in TAUT; hence q in TAUT by A2,CQC_THE1:82; end; assume q in TAUT; hence p in TAUT by A2,CQC_THE1:82; end; Lm16: |- p => (q => r) & |- r => t implies |- p => (q => t) proof assume |- p => (q => r) & |- r => t; then |- (p '&' q) => r & |- r => t by Th1; then |- (p '&' q) => t by LUKASI_1:43; hence thesis by Th3; end; ::------------------------------------------------ theorem Th5: y in still_not-bound_in All(x,s) iff y in still_not-bound_in s & y <> x proof still_not-bound_in All(x,s) = still_not-bound_in s \ {x} by QC_LANG3:16; hence thesis by ZFMISC_1:64; end; theorem Th6: y in still_not-bound_in Ex(x,s) iff y in still_not-bound_in s & y <> x proof still_not-bound_in Ex(x,s) = still_not-bound_in s \ {x} by QC_LANG3:23; hence thesis by ZFMISC_1:64; end; theorem Th7: y in still_not-bound_in s => h iff y in still_not-bound_in s or y in still_not-bound_in h proof still_not-bound_in s => h = still_not-bound_in s \/ still_not-bound_in h by QC_LANG3:20; hence thesis by XBOOLE_0:def 2; end; canceled; theorem Th9: y in still_not-bound_in s '&' h iff y in still_not-bound_in s or y in still_not-bound_in h proof still_not-bound_in s '&' h = still_not-bound_in s \/ still_not-bound_in h by QC_LANG3:14; hence thesis by XBOOLE_0:def 2; end; theorem Th10: y in still_not-bound_in s 'or' h iff y in still_not-bound_in s or y in still_not-bound_in h proof still_not-bound_in s 'or' h = still_not-bound_in s \/ still_not-bound_in h by QC_LANG3:18; hence thesis by XBOOLE_0:def 2; end; theorem not x in still_not-bound_in All(x,y,s) & not y in still_not-bound_in All(x,y,s) proof not y in still_not-bound_in All(y,s) by Th5; then not x in still_not-bound_in All(x,All(y,s)) & not y in still_not-bound_in All(x,All(y,s)) by Th5; hence thesis by QC_LANG2:20; end; theorem not x in still_not-bound_in Ex(x,y,s) & not y in still_not-bound_in Ex(x,y,s) proof not y in still_not-bound_in Ex(y,s) by Th6; then not x in still_not-bound_in Ex(x,Ex(y,s)) & not y in still_not-bound_in Ex(x,Ex(y,s)) by Th6; hence thesis by QC_LANG2:20; end; canceled; theorem Th14: (s => h).x = (s.x) => (h.x) proof s => h = 'not'(s '&' 'not' h) by QC_LANG2:def 2; hence (s => h).x = 'not'((s '&' 'not' h).x) by CQC_LANG:32 .= 'not'((s.x) '&' ('not' h.x)) by CQC_LANG:34 .= 'not'((s.x) '&' 'not'(h.x)) by CQC_LANG:32 .= (s.x) => (h.x) by QC_LANG2:def 2; end; theorem (s 'or' h).x = (s.x) 'or' (h.x) proof thus (s 'or' h).x = 'not'('not' s '&' 'not' h).x by QC_LANG2:def 3 .= 'not'(('not' s '&' 'not' h).x) by CQC_LANG:32 .= 'not'((('not' s).x) '&' (('not' h).x)) by CQC_LANG:34 .= 'not'('not'(s.x) '&' (('not' h).x)) by CQC_LANG:32 .= 'not'('not'(s.x) '&' 'not'(h.x)) by CQC_LANG:32 .= (s.x) 'or' (h.x) by QC_LANG2:def 3; end; canceled; theorem x<>y implies (Ex(x,p)).y = Ex(x,p.y) proof assume A1: x<>y; thus (Ex(x,p)).y = ('not' All(x,'not' p)).y by QC_LANG2:def 5 .= 'not'(All(x,'not' p).y) by CQC_LANG:32 .= 'not'(All(x,('not' p).y)) by A1,CQC_LANG:38 .= 'not' All(x,'not'(p.y)) by CQC_LANG:32 .= Ex(x,p.y) by QC_LANG2:def 5; end; ::--------------------------------------------------------- theorem Th18: |- p => Ex(x,p) proof |- All(x,'not' p) => 'not' p by CQC_THE1:105; then |- 'not' 'not' p => 'not' All(x,'not' p) by LUKASI_1:63; then |- 'not' 'not' p => Ex(x,p) & |- ('not' 'not' p => Ex(x,p)) => (p => Ex(x,p)) by LUKASI_1:67,QC_LANG2:def 5; hence thesis by CQC_THE1:104; end; theorem Th19: |- p implies |- Ex(x,p) proof assume A1: |- p; |- p => Ex(x,p) by Th18; hence thesis by A1,CQC_THE1:104; end; theorem |- All(x,p) => Ex(x,p) proof |- All(x,p) => p & |- p => Ex(x,p) by Th18,CQC_THE1:105; hence thesis by LUKASI_1:43; end; theorem |- All(x,p) => Ex(y,p) proof |- All(x,p) => p & |- p => Ex(y,p) by Th18,CQC_THE1:105; hence thesis by LUKASI_1:43; end; theorem Th22: |- p => q & not x in still_not-bound_in q implies |- Ex(x,p) => q proof assume that A1: |- p => q and A2: not x in still_not-bound_in q; |- 'not' q => 'not' p & not x in still_not-bound_in 'not' q by A1,A2,LUKASI_1:63,QC_LANG3:11; then |- 'not' q => All(x,'not' p) by CQC_THE1:106; then |- 'not' All(x,'not' p) => 'not' 'not' q by LUKASI_1:63; then |- Ex(x,p) => 'not' 'not' q by QC_LANG2:def 5; hence thesis by LUKASI_1:70; end; theorem Th23: not x in still_not-bound_in p implies |- Ex(x,p) => p proof assume A1: not x in still_not-bound_in p; |- p => p by LUKASI_1:44; hence thesis by A1,Th22; end; theorem not x in still_not-bound_in p & |- Ex(x,p) implies |- p proof assume A1: not x in still_not-bound_in p & |- Ex(x,p); then |- Ex(x,p) => p by Th23; hence thesis by A1,CQC_THE1:104; end; theorem Th25: p=h.x & q=h.y & not y in still_not-bound_in h implies |- p => Ex(y,q) proof assume A1: p=h.x & q=h.y & not y in still_not-bound_in h; A2: |- q => Ex(y,q) by Th18; A3: (h => Ex(y,q)).y = (h.y) => (Ex(y,q).y) by Th14 .= q => Ex(y,q) by A1,CQC_LANG:40; A4: (h => Ex(y,q)).x = (h.x) => (Ex(y,q).x) by Th14 .= p => Ex(y,q) by A1,CQC_LANG:40; not y in still_not-bound_in Ex(y,q) & not y in still_not-bound_in h by A1,Th6; then not y in still_not-bound_in h => Ex(y,q) by Th7; hence thesis by A2,A3,A4,CQC_THE1:107; end; theorem Th26: |- p implies |- All(x,p) proof assume A1: |- p; |- p => ((All(x,p) => All(x,p)) => p) by LUKASI_1:45; then A2: |- (All(x,p) => All(x,p)) => p by A1,CQC_THE1:104; not x in still_not-bound_in All(x,p) by Th5; then not x in still_not-bound_in All(x,p) => All(x,p) by Th7; then |- (All(x,p) => All(x,p)) => All(x,p) & |- All(x,p) => All(x,p) by A2,CQC_THE1:106,LUKASI_1:44; hence thesis by CQC_THE1:104; end; theorem Th27: not x in still_not-bound_in p implies |- p => All(x,p) proof assume A1: not x in still_not-bound_in p; |- p => p by LUKASI_1:44; hence thesis by A1,CQC_THE1:106; end; theorem Th28: p=h.x & q=h.y & not x in still_not-bound_in h implies |- All(x,p) => q proof assume A1: p=h.x & q=h.y & not x in still_not-bound_in h; A2: |- All(x,p) => p by CQC_THE1:105; A3: (All(x,p) => h).x = (All(x,p).x) => p by A1,Th14 .= All(x,p) => p by CQC_LANG:40; A4: (All(x,p) => h).y = (All(x,p).y) => q by A1,Th14 .= All(x,p) => q by CQC_LANG:40; not x in still_not-bound_in All(x,p) by Th5; then not x in still_not-bound_in All(x,p) => h by A1,Th7; hence thesis by A2,A3,A4,CQC_THE1:107; end; theorem not y in still_not-bound_in p implies |- All(x,p) => All(y,p) proof assume not y in still_not-bound_in p; then |- All(x,p) => p & not y in still_not-bound_in All(x,p) by Th5,CQC_THE1:105; hence thesis by CQC_THE1:106; end; theorem p=h.x & q=h.y & not x in still_not-bound_in h & not y in still_not-bound_in p implies |- All(x,p) => All(y,q) proof assume A1: p=h.x & q=h.y & not x in still_not-bound_in h & not y in still_not-bound_in p; then A2: not y in still_not-bound_in All(x,p) by Th5; |- All(x,p) => q by A1,Th28; hence thesis by A2,CQC_THE1:106; end; theorem not x in still_not-bound_in p implies |- Ex(x,p) => Ex(y,p) proof assume not x in still_not-bound_in p; then |- p => Ex(y,p) & not x in still_not-bound_in Ex(y,p) by Th6,Th18; hence thesis by Th22; end; theorem p=h.x & q=h.y & not x in still_not-bound_in q & not y in still_not-bound_in h implies |- Ex(x,p) => Ex(y,q) proof assume that A1: p=h.x & q=h.y and A2: not x in still_not-bound_in q and A3: not y in still_not-bound_in h; A4: not x in still_not-bound_in Ex(y,q) by A2,Th6; |- p => Ex(y,q) by A1,A3,Th25; hence thesis by A4,Th22; end; canceled; theorem Th34: |- All(x,p => q) => (All(x,p) => All(x,q)) proof not x in still_not-bound_in All(x,p => q) & not x in still_not-bound_in All(x,p) by Th5; then A1: not x in still_not-bound_in All(x,p => q) '&' All(x,p) by Th9; |- All(x,p => q) => (p => q) by CQC_THE1:105; then |- p => (All(x,p => q) => q) & |- All(x,p) => p by CQC_THE1:105,LUKASI_1:48; then |- All(x,p) => (All(x,p => q) => q) by LUKASI_1:43; then |- (All(x,p => q) '&' All(x,p)) => q by Th2; then |- (All(x,p => q) '&' All(x,p)) => All(x,q) by A1,CQC_THE1:106; hence |- All(x,p => q) => (All(x,p) => All(x,q)) by Th3; end; theorem Th35: |- All(x,p => q) implies |- All(x,p) => All(x,q) proof assume A1:|- All(x,p => q); |- All(x,p => q) => (All(x,p) => All(x,q)) by Th34; hence thesis by A1,CQC_THE1:104; end; theorem Th36: |- All(x,p <=> q) => (All(x,p) <=> All(x,q)) proof |- (p <=> q) => (p <=> q) by LUKASI_1:44; then |- (p <=> q) => ((p => q) '&' (q => p)) by QC_LANG2:def 4; then |- All(x,(p <=> q) => ((p => q) '&' (q => p))) by Th26; then A1: |- All(x,p <=> q) => All(x,(p => q) '&' (q => p)) by Th35; |- All(x,(p => q) '&' (q => p)) => ((p => q) '&' (q => p)) & |- ((p => q) '&' (q => p)) => (p => q) & |- ((p => q) '&' (q => p)) => (q => p) by Lm1,CQC_THE1:105; then A2: |- All(x,(p => q) '&' (q => p)) => (p => q) & |- All(x,(p => q) '&' (q => p)) => (q => p) by LUKASI_1:43; not x in still_not-bound_in All(x,(p => q) '&' (q => p)) by Th5; then |- All(x,(p => q) '&' (q => p)) => All(x,p => q) & |- All(x,(p => q) '&' (q => p)) => All(x,q => p) by A2,CQC_THE1:106; then A3: |- All(x,(p => q) '&' (q => p)) => (All(x,p => q) '&' All(x,q => p)) by Lm3; |- All(x,p => q) => (All(x,p) => All(x,q)) & |- All(x,q => p) => (All(x,q) => All(x,p)) by Th34; then |- (All(x,p => q) '&' All(x,q => p)) => ((All(x,p) => All(x,q)) '&' (All(x,q) => All(x,p))) by Lm5; then |- (All(x,p => q) '&' All(x,q => p)) => (All(x,p) <=> All(x,q)) by QC_LANG2:def 4; then |- All(x,(p => q) '&' (q => p)) => (All(x,p) <=> All(x,q)) by A3,LUKASI_1:43; hence thesis by A1,LUKASI_1:43; end; theorem |- All(x,p <=> q) implies |- All(x,p) <=> All(x,q) proof assume A1: |- All(x,p <=> q); |- All(x,p <=> q) => (All(x,p) <=> All(x,q)) by Th36; hence thesis by A1,CQC_THE1:104; end; theorem Th38: |- All(x,p => q) => (Ex(x,p) => Ex(x,q)) proof not x in still_not-bound_in All(x,p => q) & not x in still_not-bound_in Ex(x,q) by Th5,Th6; then A1: not x in still_not-bound_in All(x,p => q) => Ex(x,q) by Th7; |- All(x,p => q) => (p => q) by CQC_THE1:105; then |- (p '&' All(x,p => q)) => q & |- q => Ex(x,q) by Th2,Th18; then |- (p '&' All(x,p => q)) => Ex(x,q) by LUKASI_1:43; then |- p => (All(x,p => q) => Ex(x,q)) by Th3; then |- Ex(x,p) => (All(x,p => q) => Ex(x,q)) by A1,Th22; hence thesis by LUKASI_1:48; end; theorem Th39: |- All(x,p => q) implies |- Ex(x,p) => Ex(x,q) proof assume A1: |- All(x,p => q); |- All(x,p => q) => (Ex(x,p) => Ex(x,q)) by Th38; hence thesis by A1,CQC_THE1:104; end; theorem Th40: |- All(x,p '&' q) => (All(x,p) '&' All(x,q)) & |- (All(x,p) '&' All(x,q)) => All(x,p '&' q) proof |- p '&' q => p & |- p '&'q => q by Lm1; then A1: |- All(x,p '&' q => p) & |- All(x,p '&'q => q) by Th26; |- All(x,p '&' q => p) => (All(x,p '&' q) => All(x,p)) & |- All(x,p '&' q => q) => (All(x,p '&' q) => All(x,q)) by Th34; then |- All(x,p '&' q) => All(x,p) & |- All(x,p '&' q) => All(x,q) by A1,CQC_THE1:104; hence |- All(x,p '&' q) => (All(x,p) '&' All(x,q)) by Lm3; |- All(x,p) => p & |- All(x,q) => q by CQC_THE1:105; then A2: |- (All(x,p) '&' All(x,q)) => (p '&' q) by Lm5; not x in still_not-bound_in All(x,p) & not x in still_not-bound_in All(x,q ) by Th5; then not x in still_not-bound_in All(x,p) '&' All(x,q) by Th9; hence thesis by A2,CQC_THE1:106; end; theorem Th41: |- All(x,p '&' q) <=> (All(x,p) '&' All(x,q)) proof |- All(x,p '&' q) => (All(x,p) '&' All(x,q)) & |- (All(x,p) '&' All(x,q)) => All(x,p '&' q) by Th40; hence thesis by Lm14; end; theorem |- All(x,p '&' q) iff |- All(x,p) '&' All(x,q) proof |- All(x,p '&' q) <=> (All(x,p) '&' All(x,q)) by Th41; hence thesis by Lm15; end; theorem Th43: |- (All(x,p) 'or' All(x,q)) => All(x,p 'or' q) proof |- p => p 'or' q & |- q => p 'or' q by Lm6; then A1: |- All(x,p => p 'or' q) & |- All(x,q => p 'or' q) by Th26; |- All(x,p => p 'or' q) => (All(x,p) => All(x,p 'or' q)) & |- All(x,q => p 'or' q) => (All(x,q) => All(x,p 'or' q)) by Th34; then |- All(x,p) => All(x,p 'or' q) & |- All(x,q) => All(x,p 'or' q) by A1,CQC_THE1:104; hence thesis by Lm7; end; theorem Th44: |- Ex(x,p 'or' q) => (Ex(x,p) 'or' Ex(x,q)) & |- (Ex(x,p) 'or' Ex(x,q)) => Ex(x,p 'or' q) proof |- p => Ex(x,p) & |- q => Ex(x,q) by Th18; then A1: |- (p 'or' q) => (Ex(x,p) 'or' Ex(x,q)) by Lm4; not x in still_not-bound_in Ex(x,p) & not x in still_not-bound_in Ex(x,q) by Th6; then not x in still_not-bound_in Ex(x,p) 'or' Ex(x,q) by Th10; hence |- Ex(x,(p 'or' q)) => (Ex(x,p) 'or' Ex(x,q)) by A1,Th22; |- p => p 'or' q & |- q => p 'or' q by Lm6; then A2: |- All(x,p => p 'or' q) & |- All(x,q => p 'or' q) by Th26; |- All(x,p => p 'or' q) => (Ex(x,p) => Ex(x,p 'or' q)) & |- All(x,q => p 'or' q) => (Ex(x,q) => Ex(x,p 'or' q)) by Th38; then |- Ex(x,p) => Ex(x,p 'or' q) & |- Ex(x,q) => Ex(x,p 'or' q) by A2,CQC_THE1:104; hence thesis by Lm7; end; theorem Th45: |- Ex(x,p 'or' q) <=> (Ex(x,p) 'or' Ex(x,q)) proof |- Ex(x,p 'or' q) => (Ex(x,p) 'or' Ex(x,q)) & |- (Ex(x,p) 'or' Ex(x,q)) => Ex(x,p 'or' q) by Th44; hence thesis by Lm14; end; theorem |- Ex(x,p 'or' q) iff |- Ex(x,p) 'or' Ex(x,q) proof |- Ex(x,p 'or' q) <=> (Ex(x,p) 'or' Ex(x,q)) by Th45; hence thesis by Lm15; end; theorem Th47: |- Ex(x,p '&' q) => (Ex(x,p) '&' Ex(x,q)) proof |- p '&' q => p & |- p '&' q => q by Lm1; then |- All(x,p '&' q => p) & |- All(x,p '&' q => q) by Th26; then |- Ex(x,p '&' q) => Ex(x,p) & |- Ex(x,p '&' q) => Ex(x,q) by Th39; hence |- Ex(x,p '&' q) => (Ex(x,p) '&' Ex(x,q)) by Lm3; end; theorem |- Ex(x,p '&' q) implies |- Ex(x,p) '&' Ex(x,q) proof assume A1: |- Ex(x,p '&' q); |- Ex(x,p '&' q) => (Ex(x,p) '&' Ex(x,q)) by Th47; hence thesis by A1,CQC_THE1:104; end; theorem Th49: |- All(x,'not' 'not' p) => All(x,p) & |- All(x,p) => All(x,'not' 'not' p) proof |- 'not' 'not' p => p & |- p => 'not' 'not' p by LUKASI_1:64,65; then |- All(x,'not' 'not' p => p) & |- All(x,p => 'not' 'not' p) by Th26; hence thesis by Th35; end; theorem |- All(x,'not' 'not' p) <=> All(x,p) proof |- All(x,'not' 'not' p) => All(x,p) & |- All(x,p) => All(x,'not' 'not' p) by Th49; hence thesis by Lm14; end; theorem Th51: |- Ex(x,'not' 'not' p) => Ex(x,p) & |- Ex(x,p) => Ex(x,'not' 'not' p) proof |- 'not' 'not' p => p & |- p => 'not' 'not' p by LUKASI_1:64,65; then |- All(x,'not' 'not' p => p) & |- All(x,p => 'not' 'not' p) by Th26; hence thesis by Th39; end; theorem |- Ex(x,'not' 'not' p) <=> Ex(x,p) proof |- Ex(x,'not' 'not' p) => Ex(x,p) & |- Ex(x,p) => Ex(x,'not' 'not' p) by Th51; hence thesis by Lm14; end; theorem Th53: |- 'not' Ex(x,'not' p) => All(x,p) & |- All(x,p) => 'not' Ex(x,'not' p) proof A1: 'not' Ex(x,'not' p) = 'not' 'not' All(x,'not' 'not' p) by QC_LANG2:def 5; then |- 'not' Ex(x,'not' p) => All(x,'not' 'not' p) & |- All(x,'not' 'not' p) => All(x,p) by Th49,LUKASI_1:65; hence |- 'not' Ex(x,'not' p) => All(x,p) by LUKASI_1:43; |- All(x,p) => All(x,'not' 'not' p) & |- All(x,'not' 'not' p) => 'not' 'not' All(x,'not' 'not' p) by Th49,LUKASI_1:64; hence |- All(x,p) => 'not' Ex(x,'not' p) by A1,LUKASI_1:43; end; theorem |- 'not' Ex(x,'not' p) <=> All(x,p) proof |- 'not' Ex(x,'not' p) => All(x,p) & |- All(x,p) => 'not' Ex(x,'not' p) by Th53; hence thesis by Lm14; end; theorem Th55: |- 'not' All(x,p) => Ex(x,'not' p) & |- Ex(x,'not' p) => 'not' All(x,p) proof A1: Ex(x,'not' p) = 'not' All(x,'not' 'not' p) by QC_LANG2:def 5; then |- 'not' All(x,'not' 'not' p) => Ex(x,'not' p) & |- All(x,'not' 'not' p) => All(x,p) by Th49,LUKASI_1:44; then |- 'not' All(x,'not' 'not' p) => Ex(x,'not' p) & |- 'not' All(x,p) => 'not' All(x,'not' 'not' p) by LUKASI_1:63; hence |- 'not' All(x,p) => Ex(x,'not' p) by LUKASI_1:43; |- Ex(x,'not' p) => 'not' All(x,'not' 'not' p) & |- All(x,p) => All(x,'not' 'not' p) by A1,Th49,LUKASI_1:44; then |- Ex(x,'not' p) => 'not' All(x,'not' 'not' p) & |- 'not' All(x,'not' 'not' p) => 'not' All(x,p) by LUKASI_1:63; hence |- Ex(x,'not' p) => 'not' All(x,p) by LUKASI_1:43; end; theorem |- 'not' All(x,p) <=> Ex(x,'not' p) proof |- 'not' All(x,p) => Ex(x,'not' p) & |- Ex(x,'not' p) => 'not' All(x,p) by Th55; hence thesis by Lm14; end; theorem |- 'not' Ex(x,p) => All(x,'not' p) & |- All(x,'not' p) => 'not' Ex(x, p ) proof A1: 'not' Ex(x,p) = 'not' 'not' All(x,'not' p) by QC_LANG2:def 5; hence |- 'not' Ex(x,p) => All(x,'not' p) by LUKASI_1:65; thus thesis by A1,LUKASI_1:64; end; theorem Th58: |- All(x,'not' p) <=> 'not' Ex(x,p) proof |- All(x,'not' p) => 'not' 'not' All(x,'not' p) by LUKASI_1:64; then A1:|- All(x,'not' p) => 'not' Ex(x,p) by QC_LANG2:def 5; |- 'not' 'not' All(x,'not' p) => All(x,'not' p) by LUKASI_1:65; then |- 'not' Ex(x,p) => All(x,'not' p) by QC_LANG2:def 5; hence thesis by A1,Lm14; end; theorem |- All(x,All(y,p)) => All(y,All(x,p)) & |- All(x,y,p) => All(y,x,p) proof |- All(y,p) => p by CQC_THE1:105; then A1: |- All(x,All(y,p) => p) by Th26; |- All(x,All(y,p) => p) => (All(x,All(y,p)) => All(x,p)) by Th34; then A2: |- All(x,All(y,p)) => All(x,p) by A1,CQC_THE1:104; not y in still_not-bound_in All(y,p) by Th5; then not y in still_not-bound_in All(x,All(y,p)) by Th5; hence |- All(x,All(y,p)) => All(y,All(x,p)) by A2,CQC_THE1:106; then |- All(x,y,p) => All(y,All(x,p)) by QC_LANG2:20; hence thesis by QC_LANG2:20; end; theorem p=h.x & q=h.y & not y in still_not-bound_in h implies |- All(x,All(y,q)) => All(x,p) proof assume p=h.x & q=h.y & not y in still_not-bound_in h; then |- All(y,q) => p by Th28; then |- All(x,All(y,q) => p) by Th26; hence thesis by Th35; end; theorem |- Ex(x,Ex(y,p)) => Ex(y,Ex(x,p)) & |- Ex(x,y,p) => Ex(y,x,p) proof |- p => Ex(x,p) by Th18; then A1: |- All(y,p => Ex(x,p)) by Th26; |- All(y,p => Ex(x,p)) => (Ex(y,p) => Ex(y,Ex(x,p))) by Th38; then A2: |- Ex(y,p) => Ex(y,Ex(x,p)) by A1,CQC_THE1:104; not x in still_not-bound_in Ex(x,p) by Th6; then not x in still_not-bound_in Ex(y,Ex(x,p)) by Th6; hence |- Ex(x,Ex(y,p)) => Ex(y,Ex(x,p)) by A2,Th22; then |- Ex(x,y,p) => Ex(y,Ex(x,p)) by QC_LANG2:20; hence thesis by QC_LANG2:20; end; theorem p=h.x & q=h.y & not y in still_not-bound_in h implies |- Ex(x,p) => Ex(x,y,q) proof assume p=h.x & q=h.y & not y in still_not-bound_in h; then |- p => Ex(y,q) by Th25; then |- All(x,p => Ex(y,q)) by Th26; then |- Ex(x,p) => Ex(x,Ex(y,q)) by Th39; hence thesis by QC_LANG2:20; end; theorem |- Ex(x,All(y,p)) => All(y,Ex(x,p)) proof |- p => Ex(x,p) by Th18; then A1: |- All(y,p => Ex(x,p)) by Th26; |- All(y,p => Ex(x,p)) => (All(y,p) => All(y,Ex(x,p))) by Th34; then A2: |- All(y,p) => All(y,Ex(x,p)) by A1,CQC_THE1:104; not x in still_not-bound_in Ex(x,p) by Th6; then not x in still_not-bound_in All(y,Ex(x,p)) by Th5; hence thesis by A2,Th22; end; theorem |- Ex(x,p <=> p) proof |- p <=> p by Lm13; hence thesis by Th19; end; theorem Th65: |- Ex(x,p => q) => (All(x,p) => Ex(x,q)) & |- (All(x,p) => Ex(x,q)) => Ex(x,p => q) proof |- All(x,p) => p by CQC_THE1:105; then |- (p => q) => (All(x,p) => q) & |- q => Ex(x,q) by Th18,LUKASI_1:42; then A1: |- (p => q) => (All(x,p) => Ex(x,q)) by Lm16; not x in still_not-bound_in All(x,p) & not x in still_not-bound_in Ex(x,q) by Th5,Th6; then not x in still_not-bound_in All(x,p) => Ex(x,q) by Th7; hence |- Ex(x,p => q) => (All(x,p) => Ex(x,q)) by A1,Th22; |- All(x,p '&' 'not' q) => (All(x,p) '&' All(x,'not' q)) by Th40; then |- 'not'(All(x,p) '&' All(x,'not' q)) => 'not' All(x,p '&' 'not' q) & |- 'not' All(x,p '&' 'not' q) => Ex(x,'not'(p '&' 'not' q)) by Th55,LUKASI_1:63; then |- 'not'(All(x,p) '&' All(x,'not' q)) => Ex(x,'not'(p '&' 'not' q)) by LUKASI_1:43; then A2: |- 'not'(All(x,p) '&' All(x,'not' q)) => Ex(x,p => q) by QC_LANG2:def 2; A3: All(x,p) => Ex(x,q) = All(x,p) => 'not' All(x,'not' q) by QC_LANG2:def 5 .= 'not'(All(x,p) '&' 'not' 'not' All(x,'not' q)) by QC_LANG2:def 2; |- All(x,'not' q) => 'not' 'not' All(x,'not' q) by LUKASI_1:64; then |- (All(x,p) '&' All(x,'not' q)) => (All(x,p) '&' 'not' 'not' All(x,'not' q)) by Lm9; then |- (All(x,p) => Ex(x,q)) => 'not'(All(x,p) '&' All(x,'not' q)) by A3,LUKASI_1:63; hence |- (All(x,p) => Ex(x,q)) => Ex(x,p => q) by A2,LUKASI_1:43; end; theorem Th66: |- Ex(x,p => q) <=> (All(x,p) => Ex(x,q)) proof |- Ex(x,p => q) => (All(x,p) => Ex(x,q)) & |- (All(x,p) => Ex(x,q)) => Ex(x,p => q) by Th65; hence thesis by Lm14; end; theorem |- Ex(x,p => q) iff |- All(x,p) => Ex(x,q) proof |- Ex(x,p => q) <=> (All(x,p) => Ex(x,q)) by Th66; hence thesis by Lm15; end; theorem Th68: |- All(x,p '&' q) => (p '&' All(x,q)) proof |- All(x,p '&' q) => (p '&' q) & |- (p '&' q) => p & |- (p '&' q) => q by Lm1,CQC_THE1:105; then A1: |- All(x,p '&' q) => p & |- All(x,p '&' q) => q by LUKASI_1:43; not x in still_not-bound_in All(x,p '&' q) by Th5; then |- All(x,p '&' q) => p & |- All(x,p '&' q) => All(x,q) by A1,CQC_THE1:106; hence thesis by Lm3; end; theorem Th69: |- All(x,p '&' q) => (All(x,p) '&' q) proof |- (p '&' q) => (q '&' p) by CQC_THE1:103; then A1: |- All(x,(p '&' q) => (q '&' p)) by Th26; |- All(x,(p '&' q) => (q '&' p)) => (All(x,p '&' q) => All(x,q '&' p)) by Th34; then A2: |- All(x,p '&' q) => All(x,q '&' p) by A1,CQC_THE1:104; |- All(x,q '&' p) => (q '&' All(x,p)) by Th68; then A3: |- All(x,p '&' q) => (q '&' All(x,p)) by A2,LUKASI_1:43; |- (q '&' All(x,p)) => (All(x,p) '&' q) by CQC_THE1:103; hence thesis by A3,LUKASI_1:43; end; theorem Th70: not x in still_not-bound_in p implies |- (p '&' All(x,q)) => All(x,p '&' q) proof assume A1: not x in still_not-bound_in p; |- All(x,q) => q by CQC_THE1:105; then A2: |- p '&' All(x,q) => p '&' q by Lm9; not x in still_not-bound_in All(x,q) by Th5; then not x in still_not-bound_in p '&' All(x,q) by A1,Th9; hence |- p '&' All(x,q) => All(x,p '&' q) by A2,CQC_THE1:106; end; theorem not x in still_not-bound_in p & |- p '&' All(x,q) implies |- All(x,p '&' q) proof assume A1: not x in still_not-bound_in p & |- p '&' All(x,q); then |- (p '&' All(x,q)) => All(x,p '&' q) by Th70; hence thesis by A1,CQC_THE1:104; end; theorem Th72: not x in still_not-bound_in p implies |- (p 'or' All(x,q)) => All(x,p 'or' q) & |- All(x,p 'or' q) => (p 'or' All(x,q)) proof assume A1: not x in still_not-bound_in p; |- p => p by LUKASI_1:44; then |- p => All(x,p) by A1,CQC_THE1:106; then |- (All(x,p) 'or' All(x,q)) => All(x,p 'or' q) & |- (p 'or' All(x,q)) => (All(x,p) 'or' All(x,q)) by Lm10,Th43; hence |- (p 'or' All(x,q)) => All(x,p 'or' q) by LUKASI_1:43; |- All(x,p 'or' q) => (p 'or' q) & |- (p 'or' q) => ('not' p => q) by Lm11,CQC_THE1:105; then |- All(x,p 'or' q) => ('not' p => q) by LUKASI_1:43; then A2: |- (All(x,p 'or' q) '&' 'not' p) => q by Th1; not x in still_not-bound_in 'not' p & not x in still_not-bound_in All(x,p 'or' q) by A1,Th5,QC_LANG3:11; then not x in still_not-bound_in All(x,p 'or' q) '&' 'not' p by Th9; then |- (All(x,p 'or' q) '&' 'not' p) => All(x,q) by A2,CQC_THE1:106; then |- All(x, p 'or' q) => ('not' p => All(x,q)) & |- ('not' p => All(x,q)) => (p 'or' All(x,q)) by Lm12,Th3; hence |- All(x,p 'or' q) => (p 'or' All(x,q)) by LUKASI_1:43; end; theorem Th73: not x in still_not-bound_in p implies |- (p 'or' All(x,q)) <=> All(x,p 'or' q) proof assume not x in still_not-bound_in p; then |- (p 'or' All(x,q)) => All(x,p 'or' q) & |- All(x,p 'or' q) => (p 'or' All(x,q)) by Th72; hence thesis by Lm14; end; theorem not x in still_not-bound_in p implies (|- p 'or' All(x,q) iff |- All(x,p 'or' q)) proof assume not x in still_not-bound_in p; then |- (p 'or' All(x,q)) <=> All(x,p 'or' q) by Th73; hence thesis by Lm15; end; theorem Th75: not x in still_not-bound_in p implies |- (p '&' Ex(x,q)) => Ex(x,p '&' q) & |- Ex(x,p '&' q) => (p '&' Ex(x,q)) proof assume A1: not x in still_not-bound_in p; |- p '&' q => Ex(x,p '&' q) by Th18; then A2: |- q => (p => Ex(x,p '&' q)) by Th4; not x in still_not-bound_in Ex(x,p '&' q) by Th6; then not x in still_not-bound_in p => Ex(x,p '&' q) by A1,Th7; then |- Ex(x,q) => (p => Ex(x,p '&' q)) by A2,Th22; hence |- (p '&' Ex(x,q)) => Ex(x,p '&' q) by Th2; |- q => Ex(x,q) by Th18; then A3: |- p '&' q => p '&' Ex(x,q) by Lm9; not x in still_not-bound_in Ex(x,q) by Th6; then not x in still_not-bound_in p '&' Ex(x,q) by A1,Th9; hence thesis by A3,Th22; end; theorem Th76: not x in still_not-bound_in p implies |- (p '&' Ex(x,q)) <=> Ex(x,p '&' q) proof assume not x in still_not-bound_in p; then |- (p '&' Ex(x,q)) => Ex(x,p '&' q) & |- Ex(x,p '&' q) => (p '&' Ex(x,q)) by Th75; hence thesis by Lm14; end; theorem not x in still_not-bound_in p implies (|- p '&' Ex(x,q) iff |- Ex(x,p '&' q) ) proof assume not x in still_not-bound_in p; then |- (p '&' Ex(x,q)) <=> Ex(x,p '&' q) by Th76; hence thesis by Lm15; end; Lm17: not x in still_not-bound_in p implies |- All(x,p => q) => (p => All(x,q)) proof |- All(x,p => q) => (All(x,p) => All(x,q)) by Th34; then A1: |- All(x,p) => (All(x,p => q) => All(x,q)) by LUKASI_1:48; assume not x in still_not-bound_in p; then |- p => All(x,p) by Th27; then |- p => (All(x,p => q) => All(x,q)) by A1,LUKASI_1:43; hence thesis by LUKASI_1:48; end; theorem Th78: not x in still_not-bound_in p implies |- All(x,p => q) => (p => All(x,q)) & |- (p => All(x,q)) => All(x,p => q) proof assume A1: not x in still_not-bound_in p; hence |- All(x,p => q) => (p => All(x,q)) by Lm17; |- All(x,q) => q by CQC_THE1:105; then A2: |- All(x,All(x,q) => q) by Th26; |- (All(x,q) => q) => ((p => All(x,q)) => (p => q)) by LUKASI_1:59; then A3: |- All(x,(All(x,q) => q) => ((p => All(x,q)) => (p => q))) by Th26; |- All(x,(All(x,q) => q) => ((p => All(x,q)) => (p => q))) => (All(x,All(x,q) => q) => All(x,(p => All(x,q)) => (p => q))) by Th34; then |- All(x,All(x,q) => q) => All(x,(p => All(x,q)) => (p => q)) by A3,CQC_THE1:104; then A4: |- All(x,(p => All(x,q)) => (p => q)) by A2,CQC_THE1:104; not x in still_not-bound_in All(x,q) by Th5; then not x in still_not-bound_in p => All(x,q) by A1,Th7; then |- All(x,(p => All(x,q)) => (p => q)) => ((p => All(x,q)) => All(x,p => q)) by Lm17; hence thesis by A4,CQC_THE1:104; end; theorem Th79: not x in still_not-bound_in p implies |- (p => All(x,q)) <=> All(x,p => q) proof assume not x in still_not-bound_in p; then |- (p => All(x,q)) => All(x,p => q) & |- All(x,p => q) => (p => All(x,q)) by Th78; hence thesis by Lm14; end; theorem not x in still_not-bound_in p implies (|- All(x,p => q) iff |- p => All(x,q) ) proof assume not x in still_not-bound_in p; then |- (p => All(x,q)) <=> All(x,p => q) by Th79; hence thesis by Lm15; end; theorem Th81: not x in still_not-bound_in q implies |- Ex(x,p => q) => (All(x,p) => q) proof assume A1: not x in still_not-bound_in q; |- All(x,p) => p by CQC_THE1:105; then |- (p => q) => (All(x,p) => q) by LUKASI_1:42; then |- All(x,(p => q) => (All(x,p) => q)) & |- All(x,(p => q) => (All(x,p) => q)) => (Ex(x,p => q) => Ex(x,All(x,p) => q)) by Th26,Th38; then A2: |- Ex(x,p => q) => Ex(x,All(x,p) => q) by CQC_THE1:104; not x in still_not-bound_in All(x,p) by Th5; then not x in still_not-bound_in All(x,p) => q by A1,Th7; then |- Ex(x,All(x,p) => q) => (All(x,p) => q) by Th23; hence thesis by A2,LUKASI_1:43; end; theorem Th82: |- (All(x,p) => q) => Ex(x,p => q) proof |- All(x,p '&' 'not' q) => All(x,p) '&' 'not' q by Th69; then |- 'not'(All(x,p) '&' 'not' q) => 'not' All(x,p '&' 'not' q) by LUKASI_1:63; then A1: |- (All(x,p) => q) => 'not' All(x,p '&' 'not' q) by QC_LANG2:def 2; |- 'not' 'not'(p '&' 'not' q) => (p '&' 'not' q) by LUKASI_1:65; then A2: |- All(x,'not' 'not'(p '&' 'not' q) => (p '&' 'not' q)) by Th26; |- All(x,'not' 'not'(p '&' 'not' q) => (p '&' 'not' q)) => (All(x,'not' 'not'(p '&' 'not' q)) => All(x,(p '&' 'not' q))) by Th34; then |- All(x,'not' 'not'(p '&' 'not' q)) => All(x,(p '&' 'not' q)) by A2,CQC_THE1:104; then |- 'not' All(x,p '&' 'not' q) => 'not' All(x,'not' 'not'(p '&' 'not' q)) by LUKASI_1:63; then |- (All(x,p) => q) => 'not' All(x,'not' 'not'(p '&' 'not' q)) by A1,LUKASI_1:43; then |- (All(x,p) => q) => Ex(x,'not'(p '&' 'not' q)) by QC_LANG2:def 5; hence |- (All(x,p) => q) => Ex(x,p => q) by QC_LANG2:def 2; end; theorem not x in still_not-bound_in q implies (|- All(x,p) => q iff |- Ex(x,p => q)) proof assume not x in still_not-bound_in q; then |- (All(x,p) => q) => Ex(x,p => q) & |- Ex(x,p => q) => (All(x,p) => q ) by Th81,Th82; then |- (All(x,p) => q) <=> Ex(x,p => q) by Lm14; hence thesis by Lm15; end; theorem Th84: not x in still_not-bound_in q implies |- (Ex(x,p) => q) => All(x,p => q) & |- All(x,p => q) => (Ex(x,p) => q) proof assume A1: not x in still_not-bound_in q; then not x in still_not-bound_in Ex(x,p) & not x in still_not-bound_in q by Th6; then A2: not x in still_not-bound_in Ex(x,p) => q by Th7; |- p => Ex(x,p) by Th18; then |- (Ex(x,p) => q) => (p => q) by LUKASI_1:42; hence |- (Ex(x,p) => q) => All(x,p => q) by A2,CQC_THE1:106; |- All(x,p => q) => (Ex(x,p) => Ex(x,q)) by Th38; then |- (All(x,p => q) '&' Ex(x,p)) => Ex(x,q) & |- Ex(x,q) => q by A1,Th1,Th23; then |- (All(x,p => q) '&' Ex(x,p)) => q by LUKASI_1:43; hence thesis by Th3; end; theorem Th85: not x in still_not-bound_in q implies |- (Ex(x,p) => q) <=> All(x,p => q) proof assume not x in still_not-bound_in q; then |- (Ex(x,p) => q) => All(x,p => q) & |- All(x,p => q) => (Ex(x,p) => q ) by Th84; hence thesis by Lm14; end; theorem not x in still_not-bound_in q implies (|- Ex(x,p) => q iff |- All(x,p => q)) proof assume not x in still_not-bound_in q; then |- (Ex(x,p) => q) <=> All(x,p => q) by Th85; hence thesis by Lm15; end; theorem Th87: not x in still_not-bound_in p implies |- Ex(x,p => q) => (p => Ex(x,q)) proof assume A1: not x in still_not-bound_in p; |- q => Ex(x,q) by Th18; then |- (p => q) => (p => Ex(x,q)) by LUKASI_1:60; then A2: |- All(x,(p => q) => (p => Ex(x,q))) by Th26; |- All(x,(p => q) => (p => Ex(x,q))) => (Ex(x,p => q) => Ex(x,p => Ex(x,q))) by Th38; then A3: |- (Ex(x,p => q) => Ex(x,p => Ex(x,q))) by A2,CQC_THE1:104; not x in still_not-bound_in Ex(x,q) by Th6; then not x in still_not-bound_in p => Ex(x,q) by A1,Th7; then |- Ex(x,p => Ex(x,q)) => (p => Ex(x,q)) by Th23; hence |- Ex(x,p => q) => (p => Ex(x,q)) by A3,LUKASI_1:43; end; theorem Th88: |- (p => Ex(x,q)) => Ex(x,p => q) proof |- All(x,p '&' 'not' q) => (p '&' All(x,'not' q)) by Th68; then A1: |- 'not'(p '&' All(x,'not' q)) => 'not' All(x,p '&' 'not' q) by LUKASI_1:63; |- All(x,'not' q) <=> 'not' Ex(x,q) by Th58; then |- All(x,'not' q) => 'not' Ex(x,q) by Lm14; then |- (p '&' All(x,'not' q)) => (p '&' 'not' Ex(x,q)) by Lm9; then |- 'not'(p '&' 'not' Ex(x,q)) => 'not'(p '&' All(x,'not' q)) by LUKASI_1:63; then |- 'not'(p '&' 'not' Ex(x,q)) => 'not' All(x,p '&' 'not' q) by A1,LUKASI_1:43; then A2: |- (p => Ex(x,q)) => 'not' All(x,p '&' 'not' q) by QC_LANG2:def 2; |- 'not' 'not'(p '&' 'not' q) => (p '&' 'not' q) by LUKASI_1:65; then |- All(x,'not' 'not'(p '&' 'not' q) => (p '&' 'not' q)) & |- All(x,'not' 'not'(p '&' 'not' q) => (p '&' 'not' q)) => (All(x,'not' 'not'(p '&' 'not' q)) => All(x,p '&' 'not' q)) by Th26,Th34; then |- All(x,'not' 'not'(p '&' 'not' q)) => All(x,p '&' 'not' q) by CQC_THE1:104; then |- 'not' All(x,p '&' 'not' q) => 'not' All(x,'not' 'not'(p '&' 'not' q)) by LUKASI_1:63; then |- (p => Ex(x,q)) => 'not' All(x,'not' 'not'(p '&' 'not' q)) by A2,LUKASI_1:43; then |- (p => Ex(x,q)) => 'not' All(x,'not'(p => q)) by QC_LANG2:def 2; hence thesis by QC_LANG2:def 5; end; theorem Th89: not x in still_not-bound_in p implies |- (p => Ex(x,q)) <=> Ex(x,p => q) proof assume not x in still_not-bound_in p; then |- (p => Ex(x,q)) => Ex(x,p => q) & |- Ex(x,p => q) => (p => Ex(x,q)) by Th87,Th88; hence thesis by Lm14; end; theorem not x in still_not-bound_in p implies (|- p => Ex(x,q) iff |- Ex(x,p => q)) proof assume not x in still_not-bound_in p; then |- (p => Ex(x,q)) <=> Ex(x,p => q) by Th89; hence thesis by Lm15; end; theorem {p} |- p proof p in {p} & {p} c= Cn({p}) by CQC_THE1:38,TARSKI:def 1; hence p in Cn({p}); end; theorem Th92: Cn({p} \/ {q}) = Cn({p '&' q}) proof for t holds t in Cn({p} \/ {q}) iff for T st T is_a_theory & {p '&' q} c= T holds t in T proof let t; thus t in Cn({p} \/ {q}) implies for T st T is_a_theory & {p '&' q} c= T holds t in T proof assume A1: t in Cn({p} \/ {q}); let T; assume that A2: T is_a_theory and A3: {p '&' q} c= T; A4: p '&' q in T by A3,ZFMISC_1:37; p '&' q => p in TAUT & p '&' q => q in TAUT & TAUT c= T by A2,CQC_THE1:74,PROCAL_1:19,21; then p in T & q in T by A2,A4,CQC_THE1:def 1; then {p} c= T & {q} c= T by ZFMISC_1:37; then {p} \/ {q} c= T by XBOOLE_1:8; hence thesis by A1,A2,CQC_THE1:def 2; end; thus (for T st T is_a_theory & {p '&' q} c= T holds t in T) implies t in Cn({p} \/ {q}) proof assume A5: for T st T is_a_theory & {p '&' q} c= T holds t in T; for T st T is_a_theory & {p} \/ {q} c= T holds t in T proof let T; assume that A6: T is_a_theory and A7: {p} \/ {q} c= T; {p} c= {p} \/ {q} & {q} c= {p} \/ {q} by XBOOLE_1:7; then {p} c= T & {q} c= T by A7,XBOOLE_1:1; then A8: p in T & q in T by ZFMISC_1:37; p => (q => p '&' q) in TAUT & TAUT c= T by A6,CQC_THE1:74,PROCAL_1:28; then (q => p '&' q) in T by A6,A8,CQC_THE1:def 1; then p '&' q in T by A6,A8,CQC_THE1:def 1; then {p '&' q} c= T by ZFMISC_1:37; hence thesis by A5,A6; end; hence thesis by CQC_THE1:def 2; end; end; hence thesis by CQC_THE1:def 2; end; theorem {p,q} |- r iff {p '&' q} |- r proof thus {p,q} |- r implies {p '&' q} |- r proof assume r in Cn({p,q}); then r in Cn({p} \/ {q}) by ENUMSET1:41; hence r in Cn({p '&' q}) by Th92; end; assume r in Cn({p '&' q}); then r in Cn({p} \/ {q}) by Th92; hence r in Cn({p,q}) by ENUMSET1:41; end; theorem Th94: X|- p implies X|- All(x,p) proof assume A1: X|- p; |- p => ((All(x,p) => All(x,p)) => p) by LUKASI_1:45; then X|- p => ((All(x,p) => All(x,p)) => p) by CQC_THE1:98; then A2: X|- (All(x,p) => All(x,p)) => p by A1,CQC_THE1:92; not x in still_not-bound_in All(x,p) by Th5; then not x in still_not-bound_in All(x,p) => All(x,p) by Th7; then A3: X|- (All(x,p) => All(x,p)) => All(x,p) by A2,CQC_THE1:94; |- All(x,p) => All(x,p) by LUKASI_1:44; then X|- All(x,p) => All(x,p) by CQC_THE1:98; hence thesis by A3,CQC_THE1:92; end; theorem Th95: not x in still_not-bound_in p implies X|- All(x,p => q) => (p => All(x,q)) proof assume not x in still_not-bound_in p; then |- All(x,p => q) => (p => All(x,q)) by Th78; hence thesis by CQC_THE1:98; end; :: Deduction Theorem theorem F is closed & (X \/ {F})|- G implies X |- F => G proof assume that A1: F is closed and A2: (X \/ {F}) |- G; G in Cn(X \/ {F}) by A2,CQC_THE1:def 9; then consider f such that A3: f is_a_proof_wrt (X \/ {F}) and A4: Effect f = G by CQC_THE1:70; defpred P[Nat] means 1 <= $1 & $1 <= len f implies for H st H = (f.$1)`1 holds X|- F => H; A5: for n st for k st k < n holds P[k] holds P[n] proof let n such that A6: for k st k < n holds 1 <= k & k <= len f implies for H st H = (f.k)`1 holds X|- F => H; assume A7: 1 <= n & n <= len f; let H such that A8: H = (f.n)`1; A9: f,n is_a_correct_step_wrt (X \/ {F}) by A3,A7,CQC_THE1:def 5; now per cases by A7,CQC_THE1:45; suppose (f.n)`2 = 0; then H in X \/ {F} by A8,A9,CQC_THE1:def 4; then A10: H in X or H in {F} by XBOOLE_0:def 2; now per cases by A10,TARSKI:def 1; suppose A11: H in X; X c= Cn(X) by CQC_THE1:38; then H in Cn(X) & |- H => (F => H) by A11,LUKASI_1:45; then X|- H & X|- H => (F => H) by CQC_THE1:98,def 9; hence X|- F => H by CQC_THE1:92; suppose H = F; then |- F => H by LUKASI_1:44; hence X|- F => H by CQC_THE1:98; end; hence thesis; suppose (f.n)`2 = 1; then H = VERUM by A8,A9,CQC_THE1:def 4; then |- F => H by LUKASI_1:50; hence X|- F => H by CQC_THE1:98; suppose (f.n)`2 = 2; then ex p st H = ('not' p => p) => p by A8,A9,CQC_THE1:def 4; then |- H by CQC_THE1:100; then X|- H by CQC_THE1:98; hence X|- F => H by LUKASI_1:78; suppose (f.n)`2 = 3; then ex p,q st H = p => ('not' p => q) by A8,A9,CQC_THE1:def 4; then |- H by CQC_THE1:101; then X|- H by CQC_THE1:98; hence X|- F => H by LUKASI_1:78; suppose (f.n)`2 = 4; then ex p,q,r st H = (p => q) => ('not'(q '&' r) => 'not'(p '&' r)) by A8,A9,CQC_THE1:def 4; then |- H by CQC_THE1:102; then X|- H by CQC_THE1:98; hence X|- F => H by LUKASI_1:78; suppose (f.n)`2 = 5; then ex p,q st H = p '&' q => q '&' p by A8,A9,CQC_THE1:def 4; then |- H by CQC_THE1:103; then X|- H by CQC_THE1:98; hence X|- F => H by LUKASI_1:78; suppose (f.n)`2 = 6; then ex p,x st H = All(x,p) => p by A8,A9,CQC_THE1:def 4; then |- H by CQC_THE1:105; then X|- H by CQC_THE1:98; hence X|- F => H by LUKASI_1:78; suppose (f.n)`2 = 7; then consider i,j,p,q such that A12:1 <= i & i < n & 1 <= j & j < i and A13:p = (f.j)`1 & q = H & (f.i)`1 = p => q by A8,A9,CQC_THE1:def 4; j < n & i <= n & j <= n by A12,AXIOMS:22; then (i < n & 1 <= i & i <= len f) & (j < n & 1 <= j & j <= len f) by A7,A12,AXIOMS:22; then A14: X|- F => (p => q) & X|- F => p by A6,A13; |- (F => (p => q)) => ((F => p) => (F => q)) by LUKASI_1:54; then X|- (F => (p => q)) => ((F => p) => (F => q)) by CQC_THE1:98; then X|- (F => p) => (F => q) by A14,CQC_THE1:92; hence X|- F => H by A13,A14,CQC_THE1:92; suppose (f.n)`2 = 8; then consider i,p,q,x such that A15:1 <= i & i < n and A16:(f.i)`1 = p => q and A17: not x in still_not-bound_in p & H = p => All(x,q) by A8,A9,CQC_THE1:def 4; A18: not x in still_not-bound_in F by A1,QC_LANG1:def 30; i <= len f by A7,A15,AXIOMS:22; then X|- F => (p => q) by A6,A15,A16; then A19: X|- All(x,F => (p => q)) by Th94; |- All(x,F => (p => q)) => (F => All(x,p => q)) by A18,Th78; then X|- All(x,F => (p => q)) => (F => All(x,p => q)) by CQC_THE1:98; then A20: X|- F => All(x,p => q) by A19,CQC_THE1:92; X|- All(x,p => q) => (p => All(x,q)) by A17,Th95; hence X|- F => H by A17,A20,LUKASI_1:76; suppose (f.n)`2 = 9; then consider i,x,y,s such that A21: 1 <= i & i < n and A22: s.x in CQC-WFF & s.y in CQC-WFF and A23: not x in still_not-bound_in s & s.x = (f.i)`1 & H = s.y by A8,A9,CQC_THE1:def 4; reconsider s1 = s.x, s2 = s.y as Element of CQC-WFF by A22; i <= len f by A7,A21,AXIOMS:22; then X|- F => s1 by A6,A21,A23; then A24: X|- All(x,F => s1) by Th94; not x in still_not-bound_in F by A1,QC_LANG1:def 30; then X|- All(x,F => s1) => (F => All(x,s1)) by Th95; then A25: X |- F => All(x,s1) by A24,CQC_THE1:92; |- All(x,s1) => s2 by A23,Th28; then X|- All(x,s1) => s2 by CQC_THE1:98; hence X|- F => H by A23,A25,LUKASI_1:76; end; hence thesis; end; A26: P[n] from Comp_Ind(A5); A27: 1 <= len f & len f <= len f by A3,CQC_THE1:58; f <> {} by A3,CQC_THE1:def 5; then G = (f.len f)`1 by A4,CQC_THE1:def 6; hence thesis by A26,A27; end;