environ vocabulary DIRAF, AFF_2, ANALOAF, AFF_1, INCSP_1, VECTSP_1; notation SUBSET_1, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, PAPDESAF; constructors TRANSLAC, AFF_1, AFF_2, XBOOLE_0; clusters PAPDESAF, ZFMISC_1, XBOOLE_0; begin reserve SAS for AffinPlane; theorem :: PARDEPAP:1 SAS satisfies_PAP implies (for a1,a2,a3,b1,b2,b3 being Element of SAS holds ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2 implies a3,b1 // a1,b3 )); theorem :: PARDEPAP:2 SAS satisfies_DES implies (for o,a,a',b,b',c,c' being Element of SAS holds ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' & o,c // o,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )); theorem :: PARDEPAP:3 SAS satisfies_des implies (for a,a',b,b',c,c' being Element of SAS holds ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )); canceled; theorem :: PARDEPAP:5 ex SAS st (for o,a,a',b,b',c,c' being Element of SAS holds ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' & o,c // o,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )) & (for a,a',b,b',c,c' being Element of SAS holds ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )) & (for a1,a2,a3,b1,b2,b3 being Element of SAS holds ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2 implies a3,b1 // a1,b3 )) & (for a,b,c,d being Element of SAS holds ( not a,b // a,c & a,b // c,d & a,c // b,d implies not a,d // b,c )); theorem :: PARDEPAP:6 for o,a being Element of SAS holds (ex p being Element of SAS st (for b,c being Element of SAS holds (o,a // o,p & ex d being Element of SAS st ( o,p // o,b implies o,c // o,d & p,c // b,d ))));