Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jaroslaw Kotowicz,
and
- Konrad Raczkowski
- Received June 18, 1990
- MML identifier: FCONT_2
- [
Mizar article,
MML identifier index
]
environ
vocabulary SEQ_1, PARTFUN1, RELAT_1, ABSVALUE, ARYTM_1, FUNCT_1, BOOLE,
ARYTM_3, SQUARE_1, RFUNCT_1, ARYTM, FCONT_1, COMPTS_1, SEQ_2, ORDINAL2,
SEQM_3, SEQ_4, PARTFUN2, RCOMP_1, FINSEQ_1, LATTICES, RFUNCT_2, FCONT_2;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
REAL_1, NAT_1, FUNCT_1, ABSVALUE, RELSET_1, SQUARE_1, PARTFUN1, SEQ_1,
SEQ_2, SEQM_3, SEQ_4, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, FCONT_1;
constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, SEQ_4, SQUARE_1,
PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, FCONT_1, PARTFUN1, MEMBERED,
XBOOLE_0;
clusters RELSET_1, RFUNCT_2, PARTFUN2, XREAL_0, SEQ_1, SEQM_3, NAT_1,
MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve n,m for Nat;
reserve x, X,X1,Z,Z1 for set;
reserve s,g,r,t,p,x0,x1,x2 for Real;
reserve s1,s2,q1 for Real_Sequence;
reserve Y for Subset of REAL;
reserve f,f1,f2 for PartFunc of REAL,REAL;
definition let f,X;
pred f is_uniformly_continuous_on X means
:: FCONT_2:def 1
X c= dom f & for r st 0<r ex s st 0<s & for x1,x2 st x1 in X & x2 in X &
abs(x1 - x2) < s holds abs(f.x1 - f.x2) < r;
end;
canceled;
theorem :: FCONT_2:2
f is_uniformly_continuous_on X & X1 c= X implies
f is_uniformly_continuous_on X1;
theorem :: FCONT_2:3
f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 implies
f1+f2 is_uniformly_continuous_on X/\X1;
theorem :: FCONT_2:4
f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 implies
f1-f2 is_uniformly_continuous_on X/\X1;
theorem :: FCONT_2:5
f is_uniformly_continuous_on X implies p(#)f is_uniformly_continuous_on X;
theorem :: FCONT_2:6
f is_uniformly_continuous_on X implies -f is_uniformly_continuous_on X;
theorem :: FCONT_2:7
f is_uniformly_continuous_on X implies abs(f) is_uniformly_continuous_on X;
theorem :: FCONT_2:8
f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 &
f1 is_bounded_on Z & f2 is_bounded_on Z1 implies
f1(#)f2 is_uniformly_continuous_on X/\Z/\X1/\Z1;
theorem :: FCONT_2:9
f is_uniformly_continuous_on X implies f is_continuous_on X;
theorem :: FCONT_2:10
f is_Lipschitzian_on X implies f is_uniformly_continuous_on X;
theorem :: FCONT_2:11
for f,Y st Y is compact & f is_continuous_on Y holds
f is_uniformly_continuous_on Y;
canceled;
theorem :: FCONT_2:13
Y c= dom f & Y is compact & f is_uniformly_continuous_on Y implies
f.:Y is compact;
theorem :: FCONT_2:14
for f,Y st Y <> {} & Y c= dom f & Y is compact &
f is_uniformly_continuous_on Y ex x1,x2 st x1 in Y & x2 in Y &
f.x1 = upper_bound (f.:Y) & f.x2 = lower_bound (f.:Y);
theorem :: FCONT_2:15
X c= dom f & f is_constant_on X implies f is_uniformly_continuous_on X;
theorem :: FCONT_2:16
p<=
g & f is_continuous_on [.p,g.] implies for r st r in [.f.p,f.g.] \/ [.f.g,f.p.]
ex s st s in [.p,g.] & r = f.s;
theorem :: FCONT_2:17
p<=g & f is_continuous_on [.p,g.] implies
for r st r in [.(lower_bound (f.:[.p,g.])),(upper_bound (f.:[.p,g.])).]
ex s st s in [.p,g.] & r = f.s;
theorem :: FCONT_2:18
f is one-to-one & p<=g & f is_continuous_on [.p,g.] implies
f is_increasing_on [.p,g.] or f is_decreasing_on [.p,g.];
theorem :: FCONT_2:19
f is one-to-one & p<=g & f is_continuous_on [.p,g.] implies
(lower_bound (f.:[.p,g.])=f.p & upper_bound (f.:[.p,g.])=f.g) or
(lower_bound (f.:[.p,g.])=f.g & upper_bound (f.:[.p,g.])=f.p);
theorem :: FCONT_2:20
p<=g & f is_continuous_on [.p,g.] implies
f.:[.p,g.]=[.lower_bound (f.:[.p,g.]),upper_bound (f.:[.p,g.]).];
theorem :: FCONT_2:21
for f be one-to-one PartFunc of REAL,REAL st p<=g & f is_continuous_on [.p,g
.]
holds f" is_continuous_on [.lower_bound (f.:[.p,g.]),upper_bound (f.:
[.p,g.]).];
Back to top