environ vocabulary SEQ_1, PARTFUN1, RELAT_1, ABSVALUE, ARYTM_1, FUNCT_1, BOOLE, ARYTM_3, SQUARE_1, RFUNCT_1, ARYTM, FCONT_1, COMPTS_1, SEQ_2, ORDINAL2, SEQM_3, SEQ_4, PARTFUN2, RCOMP_1, FINSEQ_1, LATTICES, RFUNCT_2, FCONT_2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, ABSVALUE, RELSET_1, SQUARE_1, PARTFUN1, SEQ_1, SEQ_2, SEQM_3, SEQ_4, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, FCONT_1; constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, SEQ_4, SQUARE_1, PARTFUN2, RFUNCT_1, RFUNCT_2, RCOMP_1, FCONT_1, PARTFUN1, MEMBERED, XBOOLE_0; clusters RELSET_1, RFUNCT_2, PARTFUN2, XREAL_0, SEQ_1, SEQM_3, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve n,m for Nat; reserve x, X,X1,Z,Z1 for set; reserve s,g,r,t,p,x0,x1,x2 for Real; reserve s1,s2,q1 for Real_Sequence; reserve Y for Subset of REAL; reserve f,f1,f2 for PartFunc of REAL,REAL; definition let f,X; pred f is_uniformly_continuous_on X means :: FCONT_2:def 1 X c= dom f & for r st 0<r ex s st 0<s & for x1,x2 st x1 in X & x2 in X & abs(x1 - x2) < s holds abs(f.x1 - f.x2) < r; end; canceled; theorem :: FCONT_2:2 f is_uniformly_continuous_on X & X1 c= X implies f is_uniformly_continuous_on X1; theorem :: FCONT_2:3 f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 implies f1+f2 is_uniformly_continuous_on X/\X1; theorem :: FCONT_2:4 f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 implies f1-f2 is_uniformly_continuous_on X/\X1; theorem :: FCONT_2:5 f is_uniformly_continuous_on X implies p(#)f is_uniformly_continuous_on X; theorem :: FCONT_2:6 f is_uniformly_continuous_on X implies -f is_uniformly_continuous_on X; theorem :: FCONT_2:7 f is_uniformly_continuous_on X implies abs(f) is_uniformly_continuous_on X; theorem :: FCONT_2:8 f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 & f1 is_bounded_on Z & f2 is_bounded_on Z1 implies f1(#)f2 is_uniformly_continuous_on X/\Z/\X1/\Z1; theorem :: FCONT_2:9 f is_uniformly_continuous_on X implies f is_continuous_on X; theorem :: FCONT_2:10 f is_Lipschitzian_on X implies f is_uniformly_continuous_on X; theorem :: FCONT_2:11 for f,Y st Y is compact & f is_continuous_on Y holds f is_uniformly_continuous_on Y; canceled; theorem :: FCONT_2:13 Y c= dom f & Y is compact & f is_uniformly_continuous_on Y implies f.:Y is compact; theorem :: FCONT_2:14 for f,Y st Y <> {} & Y c= dom f & Y is compact & f is_uniformly_continuous_on Y ex x1,x2 st x1 in Y & x2 in Y & f.x1 = upper_bound (f.:Y) & f.x2 = lower_bound (f.:Y); theorem :: FCONT_2:15 X c= dom f & f is_constant_on X implies f is_uniformly_continuous_on X; theorem :: FCONT_2:16 p<= g & f is_continuous_on [.p,g.] implies for r st r in [.f.p,f.g.] \/ [.f.g,f.p.] ex s st s in [.p,g.] & r = f.s; theorem :: FCONT_2:17 p<=g & f is_continuous_on [.p,g.] implies for r st r in [.(lower_bound (f.:[.p,g.])),(upper_bound (f.:[.p,g.])).] ex s st s in [.p,g.] & r = f.s; theorem :: FCONT_2:18 f is one-to-one & p<=g & f is_continuous_on [.p,g.] implies f is_increasing_on [.p,g.] or f is_decreasing_on [.p,g.]; theorem :: FCONT_2:19 f is one-to-one & p<=g & f is_continuous_on [.p,g.] implies (lower_bound (f.:[.p,g.])=f.p & upper_bound (f.:[.p,g.])=f.g) or (lower_bound (f.:[.p,g.])=f.g & upper_bound (f.:[.p,g.])=f.p); theorem :: FCONT_2:20 p<=g & f is_continuous_on [.p,g.] implies f.:[.p,g.]=[.lower_bound (f.:[.p,g.]),upper_bound (f.:[.p,g.]).]; theorem :: FCONT_2:21 for f be one-to-one PartFunc of REAL,REAL st p<=g & f is_continuous_on [.p,g .] holds f" is_continuous_on [.lower_bound (f.:[.p,g.]),upper_bound (f.: [.p,g.]).];