environ vocabulary RLVECT_1, ARYTM_1, ANALMETR, FUNCT_3, ANALOAF, SYMSP_1, RELAT_1, ANALORT; notation TARSKI, XBOOLE_0, ZFMISC_1, REAL_1, RELSET_1, RLVECT_1, STRUCT_0, ANALOAF, ANALMETR, GEOMTRAP; constructors REAL_1, ANALMETR, GEOMTRAP, TDGROUP, DOMAIN_1, XREAL_0, MEMBERED, XBOOLE_0; clusters TDGROUP, RELSET_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin definition let V be Abelian (non empty LoopStr), v,w be Element of V; redefine func v + w; commutativity; end; reserve V for RealLinearSpace, u,u1,u2,v,v1,v2,w,w1,x,y for VECTOR of V, a,a1,a2,b,b1,b2,c1,c2,n,k1,k2 for Real; definition let V,x,y; let u; func Ortm(x,y,u) -> VECTOR of V equals :: ANALORT:def 1 pr1(x,y,u)*x + (-pr2(x,y,u))*y; end; theorem :: ANALORT:1 Gen x,y implies Ortm(x,y,u+v)=Ortm(x,y,u)+Ortm(x,y,v); theorem :: ANALORT:2 Gen x,y implies Ortm(x,y,n*u)= n*Ortm(x,y,u); theorem :: ANALORT:3 Gen x,y implies Ortm(x,y,0.V) = 0.V; theorem :: ANALORT:4 Gen x,y implies Ortm(x,y,-u) = -Ortm(x,y,u); theorem :: ANALORT:5 Gen x,y implies Ortm(x,y,u-v)=Ortm(x,y,u)-Ortm(x,y,v); theorem :: ANALORT:6 Gen x,y & Ortm(x,y,u)=Ortm(x,y,v) implies u=v; theorem :: ANALORT:7 Gen x,y implies Ortm(x,y,Ortm(x,y,u))=u; theorem :: ANALORT:8 Gen x,y implies ex v st u=Ortm(x,y,v); definition let V,x,y; let u; func Orte(x,y,u) -> VECTOR of V equals :: ANALORT:def 2 pr2(x,y,u)*x + (-pr1(x,y,u))*y; end; theorem :: ANALORT:9 Gen x,y implies Orte(x,y,-v)= -Orte(x,y,v); theorem :: ANALORT:10 Gen x,y implies Orte(x,y,u+v)=Orte(x,y,u) + Orte(x,y,v); theorem :: ANALORT:11 Gen x,y implies Orte(x,y,u-v)=Orte(x,y,u)-Orte(x,y,v); theorem :: ANALORT:12 Gen x,y implies Orte(x,y,n*u)=n*Orte(x,y,u); theorem :: ANALORT:13 Gen x,y & Orte(x,y,u)=Orte(x,y,v) implies u=v; theorem :: ANALORT:14 Gen x,y implies Orte(x,y,Orte(x,y,u)) = -u; theorem :: ANALORT:15 Gen x,y implies ex v st Orte(x,y,v) = u; definition let V; let x,y,u,v,u1,v1; pred u,v,u1,v1 are_COrte_wrt x,y means :: ANALORT:def 3 Orte(x,y,u),Orte(x,y,v) // u1,v1; pred u,v,u1,v1 are_COrtm_wrt x,y means :: ANALORT:def 4 Ortm(x,y,u),Ortm(x,y,v) // u1,v1; end; theorem :: ANALORT:16 Gen x,y implies (u,v // u1,v1 implies Orte(x,y,u),Orte(x,y,v) // Orte(x,y,u1),Orte(x,y,v1)); theorem :: ANALORT:17 Gen x,y implies (u,v // u1,v1 implies Ortm(x,y,u),Ortm(x,y,v) // Ortm(x,y,u1),Ortm(x,y,v1)); theorem :: ANALORT:18 Gen x,y implies (u,u1,v,v1 are_COrte_wrt x,y implies v,v1,u1,u are_COrte_wrt x,y); theorem :: ANALORT:19 Gen x,y implies (u,u1,v,v1 are_COrtm_wrt x,y implies v,v1,u,u1 are_COrtm_wrt x,y); theorem :: ANALORT:20 u,u,v,w are_COrte_wrt x,y; theorem :: ANALORT:21 u,u,v,w are_COrtm_wrt x,y; theorem :: ANALORT:22 u,v,w,w are_COrte_wrt x,y; theorem :: ANALORT:23 u,v,w,w are_COrtm_wrt x,y; theorem :: ANALORT:24 Gen x,y implies u,v,Orte(x,y,u),Orte(x,y,v) are_Ort_wrt x,y; theorem :: ANALORT:25 u,v,Orte(x,y,u),Orte(x,y,v) are_COrte_wrt x,y; theorem :: ANALORT:26 u,v,Ortm(x,y,u),Ortm(x,y,v) are_COrtm_wrt x,y; theorem :: ANALORT:27 Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y); theorem :: ANALORT:28 Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y); theorem :: ANALORT:29 Gen x,y implies (u,v,u1,v1 are_Ort_wrt x,y iff u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y); theorem :: ANALORT:30 Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y implies u=v or u1=v1; theorem :: ANALORT:31 Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y implies u=v or u1=v1; theorem :: ANALORT:32 Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y implies u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y; theorem :: ANALORT:33 Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y implies u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y; theorem :: ANALORT:34 u,v,u1,v1 are_COrte_wrt x,y implies v,u,v1,u1 are_COrte_wrt x,y; theorem :: ANALORT:35 u,v,u1,v1 are_COrtm_wrt x,y implies v,u,v1,u1 are_COrtm_wrt x,y; theorem :: ANALORT:36 Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y implies u,v,u1,w are_COrte_wrt x,y; theorem :: ANALORT:37 Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y implies u,v,u1,w are_COrtm_wrt x,y; theorem :: ANALORT:38 Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrte_wrt x,y; theorem :: ANALORT:39 Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrtm_wrt x,y; theorem :: ANALORT:40 Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrte_wrt x,y; theorem :: ANALORT:41 Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrtm_wrt x,y; theorem :: ANALORT:42 Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y & w,w1,u2,v2 are_COrte_wrt x,y implies w=w1 or v=v1 or u,u1,u2,v2 are_COrte_wrt x,y; theorem :: ANALORT:43 Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y & w,w1,u2,v2 are_COrtm_wrt x,y implies w=w1 or v=v1 or u,u1,u2,v2 are_COrtm_wrt x,y; canceled 2; theorem :: ANALORT:46 Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u2,v2,w,w1 are_COrte_wrt x,y implies u,u1,u2,v2 are_COrte_wrt x,y or v=v1 or w=w1; theorem :: ANALORT:47 Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u2,v2,w,w1 are_COrtm_wrt x,y implies u,u1,u2,v2 are_COrtm_wrt x,y or v=v1 or w=w1; theorem :: ANALORT:48 Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u,u1,u2,v2 are_COrte_wrt x,y implies u2,v2,w,w1 are_COrte_wrt x,y or v=v1 or u=u1; theorem :: ANALORT:49 Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u,u1,u2,v2 are_COrtm_wrt x,y implies u2,v2,w,w1 are_COrtm_wrt x,y or v=v1 or u=u1; theorem :: ANALORT:50 Gen x,y implies (for v,w,u1,v1,w1 holds (not (v,v1,w,u1 are_COrte_wrt x,y) & not (v,v1,u1,w are_COrte_wrt x,y) & u1,w1,u1,w are_COrte_wrt x,y) implies ex u2 st ((v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y) & (u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y))); theorem :: ANALORT:51 Gen x,y implies (ex u,v,w st (u,v,u,w are_COrte_wrt x,y & for v1,w1 st v1,w1,u,v are_COrte_wrt x,y holds (not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y or v1=w1))); theorem :: ANALORT:52 Gen x,y implies (for v,w,u1,v1,w1 holds (not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y) implies ex u2 st ((v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y) & (u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y))); theorem :: ANALORT:53 Gen x,y implies (ex u,v,w st (u,v,u,w are_COrtm_wrt x,y & for v1,w1 holds (v1,w1,u,v are_COrtm_wrt x,y implies (not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y or v1=w1)))); reserve uu,vv for set; definition let V;let x,y; func CORTE(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means :: ANALORT:def 5 [uu,vv] in it iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y; end; definition let V;let x,y; func CORTM(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means :: ANALORT:def 6 [uu,vv] in it iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y; end; definition let V;let x,y; func CESpace(V,x,y) -> strict AffinStruct equals :: ANALORT:def 7 AffinStruct (# the carrier of V,CORTE(V,x,y) #); end; definition let V;let x,y; cluster CESpace(V,x,y) -> non empty; end; definition let V;let x,y; func CMSpace(V,x,y) -> strict AffinStruct equals :: ANALORT:def 8 AffinStruct (# the carrier of V,CORTM(V,x,y) #); end; definition let V;let x,y; cluster CMSpace(V,x,y) -> non empty; end; theorem :: ANALORT:54 uu is Element of CESpace(V,x,y) iff uu is VECTOR of V; theorem :: ANALORT:55 uu is Element of CMSpace(V,x,y) iff uu is VECTOR of V; reserve p,q,r,s for Element of CESpace(V,x,y); theorem :: ANALORT:56 u=p & v=q & u1=r & v1=s implies (p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y); reserve p,q,r,s for Element of CMSpace(V,x,y); theorem :: ANALORT:57 u=p & v=q & u1=r & v1=s implies (p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y);