Journal of Formalized Mathematics
Volume 3, 1991
University of Bialystok
Copyright (c) 1991 Association of Mizar Users

The abstract of the Mizar article:

Oriented Metric-Affine Plane --- Part I

by
Jaroslaw Zajkowski

Received October 24, 1991

MML identifier: ANALORT
[ Mizar article, MML identifier index ]


environ

 vocabulary RLVECT_1, ARYTM_1, ANALMETR, FUNCT_3, ANALOAF, SYMSP_1, RELAT_1,
      ANALORT;
 notation TARSKI, XBOOLE_0, ZFMISC_1, REAL_1, RELSET_1, RLVECT_1, STRUCT_0,
      ANALOAF, ANALMETR, GEOMTRAP;
 constructors REAL_1, ANALMETR, GEOMTRAP, TDGROUP, DOMAIN_1, XREAL_0, MEMBERED,
      XBOOLE_0;
 clusters TDGROUP, RELSET_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;


begin

definition let V be Abelian (non empty LoopStr),
                   v,w be Element of V;
 redefine func v + w;
 commutativity;
end;

 reserve
         V for RealLinearSpace,
         u,u1,u2,v,v1,v2,w,w1,x,y for VECTOR of V,

         a,a1,a2,b,b1,b2,c1,c2,n,k1,k2 for Real;

definition let V,x,y;
 let u;
 func Ortm(x,y,u) -> VECTOR of V equals
:: ANALORT:def 1
 pr1(x,y,u)*x + (-pr2(x,y,u))*y;
end;

theorem :: ANALORT:1
  Gen x,y implies Ortm(x,y,u+v)=Ortm(x,y,u)+Ortm(x,y,v);

theorem :: ANALORT:2
  Gen x,y implies Ortm(x,y,n*u)= n*Ortm(x,y,u);

theorem :: ANALORT:3
    Gen x,y implies Ortm(x,y,0.V) = 0.V;

theorem :: ANALORT:4
  Gen x,y implies Ortm(x,y,-u) = -Ortm(x,y,u);

theorem :: ANALORT:5
  Gen x,y implies Ortm(x,y,u-v)=Ortm(x,y,u)-Ortm(x,y,v);

theorem :: ANALORT:6
  Gen x,y & Ortm(x,y,u)=Ortm(x,y,v) implies u=v;

theorem :: ANALORT:7
  Gen x,y implies Ortm(x,y,Ortm(x,y,u))=u;

theorem :: ANALORT:8
 Gen x,y implies ex v st u=Ortm(x,y,v);

definition let V,x,y; let u;
  func Orte(x,y,u) -> VECTOR of V equals
:: ANALORT:def 2
  pr2(x,y,u)*x + (-pr1(x,y,u))*y;
end;

theorem :: ANALORT:9
  Gen x,y implies Orte(x,y,-v)= -Orte(x,y,v);

theorem :: ANALORT:10
  Gen x,y implies Orte(x,y,u+v)=Orte(x,y,u) + Orte(x,y,v);

theorem :: ANALORT:11
  Gen x,y implies Orte(x,y,u-v)=Orte(x,y,u)-Orte(x,y,v);

theorem :: ANALORT:12
  Gen x,y implies Orte(x,y,n*u)=n*Orte(x,y,u);

theorem :: ANALORT:13
  Gen x,y & Orte(x,y,u)=Orte(x,y,v) implies u=v;

theorem :: ANALORT:14
  Gen x,y implies Orte(x,y,Orte(x,y,u)) = -u;

theorem :: ANALORT:15
  Gen x,y implies ex v st Orte(x,y,v) = u;

definition let V; let x,y,u,v,u1,v1;
 pred u,v,u1,v1 are_COrte_wrt x,y means
:: ANALORT:def 3
   Orte(x,y,u),Orte(x,y,v) // u1,v1;
 pred u,v,u1,v1 are_COrtm_wrt x,y means
:: ANALORT:def 4
   Ortm(x,y,u),Ortm(x,y,v) // u1,v1;
end;

theorem :: ANALORT:16
  Gen x,y implies (u,v // u1,v1 implies
     Orte(x,y,u),Orte(x,y,v) // Orte(x,y,u1),Orte(x,y,v1));

theorem :: ANALORT:17
  Gen x,y implies (u,v // u1,v1 implies
     Ortm(x,y,u),Ortm(x,y,v) // Ortm(x,y,u1),Ortm(x,y,v1));

theorem :: ANALORT:18
  Gen x,y implies (u,u1,v,v1 are_COrte_wrt x,y implies
   v,v1,u1,u are_COrte_wrt x,y);

theorem :: ANALORT:19
  Gen x,y implies (u,u1,v,v1 are_COrtm_wrt x,y implies
   v,v1,u,u1 are_COrtm_wrt x,y);

theorem :: ANALORT:20
  u,u,v,w are_COrte_wrt x,y;

theorem :: ANALORT:21
    u,u,v,w are_COrtm_wrt x,y;

theorem :: ANALORT:22
    u,v,w,w are_COrte_wrt x,y;

theorem :: ANALORT:23
    u,v,w,w are_COrtm_wrt x,y;

theorem :: ANALORT:24
   Gen x,y implies u,v,Orte(x,y,u),Orte(x,y,v) are_Ort_wrt x,y;

theorem :: ANALORT:25
    u,v,Orte(x,y,u),Orte(x,y,v) are_COrte_wrt x,y;

theorem :: ANALORT:26
    u,v,Ortm(x,y,u),Ortm(x,y,v) are_COrtm_wrt x,y;

theorem :: ANALORT:27
    Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 &
         u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y);

theorem :: ANALORT:28
    Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 &
         u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y);

theorem :: ANALORT:29
    Gen x,y implies (u,v,u1,v1 are_Ort_wrt x,y iff
         u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y);

theorem :: ANALORT:30
    Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y
   implies u=v or u1=v1;

theorem :: ANALORT:31
    Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y
    implies u=v or u1=v1;

theorem :: ANALORT:32
    Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y
    implies u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y;

theorem :: ANALORT:33
    Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y
    implies u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y;

theorem :: ANALORT:34
    u,v,u1,v1 are_COrte_wrt x,y implies v,u,v1,u1 are_COrte_wrt x,y;

theorem :: ANALORT:35
    u,v,u1,v1 are_COrtm_wrt x,y implies v,u,v1,u1 are_COrtm_wrt x,y;

theorem :: ANALORT:36
    Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y
implies u,v,u1,w are_COrte_wrt x,y;

theorem :: ANALORT:37
    Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y
   implies u,v,u1,w are_COrtm_wrt x,y;

theorem :: ANALORT:38
    Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrte_wrt x,y;

theorem :: ANALORT:39
    Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrtm_wrt x,y;

theorem :: ANALORT:40
  Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrte_wrt x,y;

theorem :: ANALORT:41
  Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrtm_wrt x,y;

theorem :: ANALORT:42
    Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y &
      w,w1,u2,v2 are_COrte_wrt x,y implies
      w=w1 or v=v1 or u,u1,u2,v2 are_COrte_wrt x,y;

theorem :: ANALORT:43
    Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y &
      w,w1,u2,v2 are_COrtm_wrt x,y implies
      w=w1 or v=v1 or u,u1,u2,v2 are_COrtm_wrt x,y;

canceled 2;

theorem :: ANALORT:46
    Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y
     & u2,v2,w,w1 are_COrte_wrt x,y implies
     u,u1,u2,v2 are_COrte_wrt x,y or v=v1 or w=w1;

theorem :: ANALORT:47
    Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y
     & u2,v2,w,w1 are_COrtm_wrt x,y implies
     u,u1,u2,v2 are_COrtm_wrt x,y or v=v1 or w=w1;

theorem :: ANALORT:48
    Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y
     & u,u1,u2,v2 are_COrte_wrt x,y implies
     u2,v2,w,w1 are_COrte_wrt x,y or v=v1 or u=u1;

theorem :: ANALORT:49
    Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y
     & u,u1,u2,v2 are_COrtm_wrt x,y implies
     u2,v2,w,w1 are_COrtm_wrt x,y or v=v1 or u=u1;

theorem :: ANALORT:50
    Gen x,y implies (for v,w,u1,v1,w1 holds
  (not (v,v1,w,u1 are_COrte_wrt x,y) &
  not (v,v1,u1,w are_COrte_wrt x,y) & u1,w1,u1,w are_COrte_wrt x,y)
  implies ex u2 st
  ((v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y) &
  (u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y)));

theorem :: ANALORT:51
  Gen x,y implies (ex u,v,w st (u,v,u,w are_COrte_wrt x,y &
for v1,w1 st v1,w1,u,v are_COrte_wrt x,y holds
(not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y
or v1=w1)));

theorem :: ANALORT:52
    Gen x,y implies (for v,w,u1,v1,w1 holds
  (not v,v1,w,u1 are_COrtm_wrt x,y &
   not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y)
  implies ex u2 st
  ((v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y) &
  (u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y)));

theorem :: ANALORT:53
  Gen x,y implies (ex u,v,w st (u,v,u,w are_COrtm_wrt x,y &
for v1,w1 holds (v1,w1,u,v are_COrtm_wrt x,y implies
(not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y
or v1=w1))));

reserve uu,vv for set;

definition let V;let x,y;
 func CORTE(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means
:: ANALORT:def 5
 [uu,vv] in it iff
ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y;
end;

definition let V;let x,y;
 func CORTM(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means
:: ANALORT:def 6
 [uu,vv] in it iff
 ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y;
end;

definition let V;let x,y;
 func CESpace(V,x,y) -> strict AffinStruct equals
:: ANALORT:def 7
  AffinStruct (# the carrier of V,CORTE(V,x,y) #);
end;

definition let V;let x,y;
 cluster CESpace(V,x,y) -> non empty;
end;

definition let V;let x,y;
 func CMSpace(V,x,y) -> strict AffinStruct equals
:: ANALORT:def 8
  AffinStruct (# the carrier of V,CORTM(V,x,y) #);
end;

definition let V;let x,y;
 cluster CMSpace(V,x,y) -> non empty;
end;

theorem :: ANALORT:54
  uu is Element of CESpace(V,x,y) iff uu is VECTOR of V;

theorem :: ANALORT:55
  uu is Element of CMSpace(V,x,y) iff uu is VECTOR of V;

reserve p,q,r,s for Element of CESpace(V,x,y);

theorem :: ANALORT:56
  u=p & v=q & u1=r & v1=s implies (p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y);

reserve p,q,r,s for Element of CMSpace(V,x,y);

theorem :: ANALORT:57
  u=p & v=q & u1=r & v1=s implies (p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y);

Back to top