definition
let X,
Y be
RealNormSpace;
let T be
LinearOperator of
X,
Y;
func graphNSP T -> non
empty NORMSTR equals
NORMSTR(#
(graph T),
(Zero_ ((graph T),[:X,Y:])),
(Add_ ((graph T),[:X,Y:])),
(Mult_ ((graph T),[:X,Y:])),
(graphNrm T) #);
correctness
coherence
NORMSTR(# (graph T),(Zero_ ((graph T),[:X,Y:])),(Add_ ((graph T),[:X,Y:])),(Mult_ ((graph T),[:X,Y:])),(graphNrm T) #) is non empty NORMSTR ;
;
end;
::
deftheorem defines
graphNSP LOPBAN_7:def 4 :
for X, Y being RealNormSpace
for T being LinearOperator of X,Y holds graphNSP T = NORMSTR(# (graph T),(Zero_ ((graph T),[:X,Y:])),(Add_ ((graph T),[:X,Y:])),(Mult_ ((graph T),[:X,Y:])),(graphNrm T) #);
Lm1:
for X, Y being RealNormSpace
for T being LinearOperator of X,Y
for x, y being Point of (graphNSP T)
for a being Real holds
( ( ||.x.|| = 0 implies x = 0. (graphNSP T) ) & ( x = 0. (graphNSP T) implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = |.a.| * ||.x.|| )