reconsider jj = 1 as positive Real ;
Lm1:
for X being non empty addLoopStr
for M being Subset of X
for x, y being Point of X st y in M holds
x + y in x + M
Lm2:
for X being non empty addLoopStr
for M, N being Subset of X holds { (x + N) where x is Point of X : x in M } is Subset-Family of X
Lm3:
for X being non empty addLoopStr
for M, N, V being Subset of X st M c= N holds
V + M c= V + N
Lm4:
for X being RealLinearSpace holds conv ({} X) = {}
Lm5:
for X being RealLinearSpace
for A, B being circled Subset of X holds A + B is circled
Lm6:
for X being RealLinearSpace
for A being circled Subset of X holds A is symmetric
Lm7:
for X being RealLinearSpace
for M being circled Subset of X holds conv M is circled
Lm8:
for X being LinearTopSpace
for a being Point of X holds transl (a,X) is one-to-one
Lm9:
for X being LinearTopSpace
for a being Point of X holds transl (a,X) is continuous
Lm10:
for X being LinearTopSpace
for E being Subset of X
for x being Point of X st E is open holds
x + E is open
Lm11:
for X being LinearTopSpace
for E being open Subset of X
for K being Subset of X holds K + E is open
Lm12:
for X being LinearTopSpace
for D being closed Subset of X
for x being Point of X holds x + D is closed
Lm13:
for X being LinearTopSpace
for r being non zero Real holds mlt (r,X) is one-to-one
Lm14:
for X being LinearTopSpace
for r being non zero Real holds mlt (r,X) is continuous
Lm15:
for X being LinearTopSpace
for V being bounded Subset of X
for r being Real holds r * V is bounded
Lm16:
for X being LinearTopSpace
for C being convex Subset of X holds Cl C is convex
Lm17:
for X being LinearTopSpace
for C being convex Subset of X holds Int C is convex
Lm18:
for X being LinearTopSpace
for B being circled Subset of X holds Cl B is circled
Lm19:
for X being LinearTopSpace
for E being bounded Subset of X holds Cl E is bounded
Lm20:
for X being LinearTopSpace
for U, V being a_neighborhood of 0. X
for F being Subset-Family of X
for r being positive Real st ( for s being Real st |.s.| < r holds
s * V c= U ) & F = { (a * V) where a is Real : |.a.| < r } holds
( union F is a_neighborhood of 0. X & union F is circled & union F c= U )
theorem
for
V being
RealLinearSpace for
x1,
x2,
x3,
x4 being
Point of
V st
x1,
x2,
x3,
x4 are_collinear holds
(
x1,
x2,
x3 are_collinear &
x1,
x2,
x4 are_collinear ) ;
theorem
for
V being
RealLinearSpace for
x1,
x2,
x3,
x4 being
Point of
V st
x1 <> x2 &
x1,
x2,
x3 are_collinear &
x1,
x2,
x4 are_collinear holds
x1,
x2,
x3,
x4 are_collinear