definition
let X be non
empty set ;
let Y be non
empty addLoopStr ;
existence
ex b1 being BinOp of (Funcs (X, the carrier of Y)) st
for f, g being Element of Funcs (X, the carrier of Y) holds b1 . (f,g) = the addF of Y .: (f,g)
uniqueness
for b1, b2 being BinOp of (Funcs (X, the carrier of Y)) st ( for f, g being Element of Funcs (X, the carrier of Y) holds b1 . (f,g) = the addF of Y .: (f,g) ) & ( for f, g being Element of Funcs (X, the carrier of Y) holds b2 . (f,g) = the addF of Y .: (f,g) ) holds
b1 = b2
end;
definition
let X be non
empty set ;
let Y be
RealLinearSpace;
existence
ex b1 being Function of [:REAL,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) st
for a being Real
for f being Element of Funcs (X, the carrier of Y)
for x being Element of X holds (b1 . [a,f]) . x = a * (f . x)
uniqueness
for b1, b2 being Function of [:REAL,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) st ( for a being Real
for f being Element of Funcs (X, the carrier of Y)
for x being Element of X holds (b1 . [a,f]) . x = a * (f . x) ) & ( for a being Real
for f being Element of Funcs (X, the carrier of Y)
for x being Element of X holds (b2 . [a,f]) . x = a * (f . x) ) holds
b1 = b2
end;
Lm1:
for A, B being non empty set
for x being Element of A
for f being Function of A,B holds x in dom f
theorem Th4:
for
X being non
empty set for
Y being
RealLinearSpace for
f,
g,
h being
Element of
Funcs (
X, the
carrier of
Y) holds
(FuncAdd (X,Y)) . (
f,
((FuncAdd (X,Y)) . (g,h)))
= (FuncAdd (X,Y)) . (
((FuncAdd (X,Y)) . (f,g)),
h)
reconsider jj = 1 as Element of REAL by XREAL_0:def 1;
theorem Th9:
for
X being non
empty set for
Y being
RealLinearSpace for
f being
Element of
Funcs (
X, the
carrier of
Y)
for
a,
b being
Real holds
(FuncAdd (X,Y)) . (
((FuncExtMult (X,Y)) . [a,f]),
((FuncExtMult (X,Y)) . [b,f]))
= (FuncExtMult (X,Y)) . [(a + b),f]
Lm2:
for X being non empty set
for Y being RealLinearSpace
for f, g being Element of Funcs (X, the carrier of Y)
for a being Real holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]
theorem
for
X,
Y being
RealLinearSpace holds
RLSStruct(#
(LinearOperators (X,Y)),
(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is
Subspace of
RealVectSpace ( the
carrier of
X,
Y)
by Th14, RSSPACE:11;
registration
let X,
Y be
RealLinearSpace;
cluster RLSStruct(#
(LinearOperators (X,Y)),
(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is Abelian & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is add-associative & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is right_zeroed & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is right_complementable & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is vector-distributive & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is scalar-distributive & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is scalar-associative & RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is scalar-unital )
by Th14, RSSPACE:11;
end;
definition
let X,
Y be
RealLinearSpace;
func R_VectorSpace_of_LinearOperators (
X,
Y)
-> RealLinearSpace equals
RLSStruct(#
(LinearOperators (X,Y)),
(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),
(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #);
coherence
RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #) is RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_LinearOperators LOPBAN_1:def 7 :
for X, Y being RealLinearSpace holds R_VectorSpace_of_LinearOperators (X,Y) = RLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(RealVectSpace ( the carrier of X,Y)))) #);
theorem
for
X,
Y being
RealNormSpace holds
RLSStruct(#
(BoundedLinearOperators (X,Y)),
(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is
Subspace of
R_VectorSpace_of_LinearOperators (
X,
Y)
by Th22, RSSPACE:11;
registration
let X,
Y be
RealNormSpace;
cluster RLSStruct(#
(BoundedLinearOperators (X,Y)),
(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is Abelian & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is add-associative & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is right_zeroed & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is right_complementable & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is vector-distributive & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-distributive & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-associative & RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-unital )
by Th22, RSSPACE:11;
end;
definition
let X,
Y be
RealNormSpace;
func R_VectorSpace_of_BoundedLinearOperators (
X,
Y)
-> RealLinearSpace equals
RLSStruct(#
(BoundedLinearOperators (X,Y)),
(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #);
coherence
RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #) is RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_BoundedLinearOperators LOPBAN_1:def 10 :
for X, Y being RealNormSpace holds R_VectorSpace_of_BoundedLinearOperators (X,Y) = RLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))) #);
definition
let X,
Y be
RealNormSpace;
existence
ex b1 being Function of (BoundedLinearOperators (X,Y)),REAL st
for x being object st x in BoundedLinearOperators (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y)))
uniqueness
for b1, b2 being Function of (BoundedLinearOperators (X,Y)),REAL st ( for x being object st x in BoundedLinearOperators (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) & ( for x being object st x in BoundedLinearOperators (X,Y) holds
b2 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) holds
b1 = b2
end;
definition
let X,
Y be
RealNormSpace;
func R_NormSpace_of_BoundedLinearOperators (
X,
Y)
-> non
empty NORMSTR equals
NORMSTR(#
(BoundedLinearOperators (X,Y)),
(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),
(BoundedLinearOperatorsNorm (X,Y)) #);
coherence
NORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #) is non empty NORMSTR
;
end;
::
deftheorem defines
R_NormSpace_of_BoundedLinearOperators LOPBAN_1:def 14 :
for X, Y being RealNormSpace holds R_NormSpace_of_BoundedLinearOperators (X,Y) = NORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(R_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #);
registration
let X,
Y be
RealNormSpace;
coherence
( R_NormSpace_of_BoundedLinearOperators (X,Y) is reflexive & R_NormSpace_of_BoundedLinearOperators (X,Y) is discerning & R_NormSpace_of_BoundedLinearOperators (X,Y) is RealNormSpace-like & R_NormSpace_of_BoundedLinearOperators (X,Y) is vector-distributive & R_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-distributive & R_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-associative & R_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-unital & R_NormSpace_of_BoundedLinearOperators (X,Y) is Abelian & R_NormSpace_of_BoundedLinearOperators (X,Y) is add-associative & R_NormSpace_of_BoundedLinearOperators (X,Y) is right_zeroed & R_NormSpace_of_BoundedLinearOperators (X,Y) is right_complementable )
by Th39;
end;
Lm3:
for e being Real
for seq being Real_Sequence st seq is convergent & ex k being Nat st
for i being Nat st k <= i holds
seq . i <= e holds
lim seq <= e