Lm1:
for L being non empty multLoopStr st L is well-unital holds
1. L = 1_ L
set FR = F_Real ;
reconsider jj = 1 as Real ;
canceled;
Lm2:
now for F being non empty right_complementable Abelian add-associative right_zeroed associative distributive left_unital doubleLoopStr
for MLT being Function of [: the carrier of F, the carrier of F:], the carrier of F holds
( ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is Abelian & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is add-associative & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_zeroed & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable )
let F be non
empty right_complementable Abelian add-associative right_zeroed associative distributive left_unital doubleLoopStr ;
for MLT being Function of [: the carrier of F, the carrier of F:], the carrier of F holds
( ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is Abelian & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is add-associative & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_zeroed & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable )let MLT be
Function of
[: the carrier of F, the carrier of F:], the
carrier of
F;
( ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is Abelian & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is add-associative & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_zeroed & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable )set GF =
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #);
thus
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #) is
Abelian
( ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is add-associative & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_zeroed & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable )
thus
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #) is
add-associative
( ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_zeroed & ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable )
thus
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #) is
right_zeroed
ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) is right_complementable
thus
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #) is
right_complementable
verum
proof
let x be
Element of
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #);
ALGSTR_0:def 16 x is right_complementable
reconsider x9 =
x as
Element of
F ;
consider t being
Element of
F such that A1:
x9 + t = 0. F
by ALGSTR_0:def 11;
reconsider t9 =
t as
Element of
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #) ;
take
t9
;
ALGSTR_0:def 11 x + t9 = 0. ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #)
thus
x + t9 = 0. ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #)
by A1;
verum
end;
end;
Lm3:
now for F being non empty right_complementable add-associative right_zeroed associative well-unital distributive doubleLoopStr
for MLT being Function of [: the carrier of F, the carrier of F:], the carrier of F st MLT = the multF of F holds
for x, y being Element of F
for v, w being Element of ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) holds
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )
let F be non
empty right_complementable add-associative right_zeroed associative well-unital distributive doubleLoopStr ;
for MLT being Function of [: the carrier of F, the carrier of F:], the carrier of F st MLT = the multF of F holds
for x, y being Element of F
for v, w being Element of ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) holds
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )let MLT be
Function of
[: the carrier of F, the carrier of F:], the
carrier of
F;
( MLT = the multF of F implies for x, y being Element of F
for v, w being Element of ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) holds
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v ) )assume A1:
MLT = the
multF of
F
;
for x, y being Element of F
for v, w being Element of ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) holds
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )let x,
y be
Element of
F;
for v, w being Element of ModuleStr(# the carrier of F, the addF of F,(0. F),MLT #) holds
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )set LS =
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #);
let v,
w be
Element of
ModuleStr(# the
carrier of
F, the
addF of
F,
(0. F),
MLT #);
( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )reconsider v9 =
v,
w9 =
w as
Element of
F ;
thus x * (v + w) =
x * (v9 + w9)
by A1
.=
(x * v9) + (x * w9)
by Def7
.=
(x * v) + (x * w)
by A1
;
( (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. F) * v = v )thus (x + y) * v =
(x + y) * v9
by A1
.=
(x * v9) + (y * v9)
by Def7
.=
(x * v) + (y * v)
by A1
;
( (x * y) * v = x * (y * v) & (1. F) * v = v )thus (x * y) * v =
(x * y) * v9
by A1
.=
x * (y * v9)
by GROUP_1:def 3
.=
x * (y * v)
by A1
;
(1. F) * v = vthus (1. F) * v =
(1. F) * v9
by A1
.=
v
;
verum
end;
Lm4:
for V being non empty right_complementable add-associative right_zeroed addLoopStr
for v, w being Element of V holds - (w + (- v)) = v - w
Lm5:
for V being non empty right_complementable add-associative right_zeroed addLoopStr
for v, w being Element of V holds - ((- v) - w) = w + v