Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Shunichi Kobayashi
- Received November 26, 1999
- MML identifier: BVFUNC20
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, FUNCT_1, CAT_1, FUNCT_4,
RELAT_1, BOOLE, BVFUNC_2, T_1TOPSP, SETFAM_1, CANTOR_1, ZF_LANG,
BVFUNC_1;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, VALUAT_1, EQREL_1,
PARTIT1, CANTOR_1, BVFUNC_1, BVFUNC_2;
constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1;
clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, VALUAT_1, AMI_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Chap. 1 Preliminaries
reserve Y for non empty set,
a for Element of Funcs(Y,BOOLEAN),
G for Subset of PARTITIONS(Y),
A, B, C, D for a_partition of Y;
theorem :: BVFUNC20:1
for h being Function, A',B',C',D' being set st
G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A')
holds h.B = B' & h.C = C' & h.D = D';
theorem :: BVFUNC20:2
for A,B,C,D being set,h being Function, A',B',C',D' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A')
holds dom h = {A,B,C,D};
theorem :: BVFUNC20:3
for h being Function,A',B',C',D' being set st G={A,B,C,D} &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D};
theorem :: BVFUNC20:4
for z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D
holds EqClass(u,B '/\' C '/\' D) meets EqClass(z,A);
theorem :: BVFUNC20:5
for z,u being Element of Y
st G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D &
EqClass(z,C '/\' D)=EqClass(u,C '/\' D)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
begin
canceled 14;
theorem :: BVFUNC20:20
G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D
implies Ex('not' All(a,A,G),B,G) '<' 'not' All(All(a,B,G),A,G);
canceled 2;
theorem :: BVFUNC20:23
G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D
implies Ex(Ex('not' a,A,G),B,G) '<' 'not' All(All(a,B,G),A,G);
Back to top