environ vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, FUNCT_1, CAT_1, FUNCT_4, RELAT_1, BOOLE, BVFUNC_2, T_1TOPSP, SETFAM_1, CANTOR_1, ZF_LANG, BVFUNC_1; notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, FRAENKEL, CQC_LANG, FUNCT_4, MARGREL1, VALUAT_1, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1, BVFUNC_2; constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1; clusters SUBSET_1, PARTIT1, CQC_LANG, MARGREL1, VALUAT_1, AMI_1, XBOOLE_0; requirements SUBSET, BOOLE; begin :: Chap. 1 Preliminaries reserve Y for non empty set, a for Element of Funcs(Y,BOOLEAN), G for Subset of PARTITIONS(Y), A, B, C, D for a_partition of Y; theorem :: BVFUNC20:1 for h being Function, A',B',C',D' being set st G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A') holds h.B = B' & h.C = C' & h.D = D'; theorem :: BVFUNC20:2 for A,B,C,D being set,h being Function, A',B',C',D' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A') holds dom h = {A,B,C,D}; theorem :: BVFUNC20:3 for h being Function,A',B',C',D' being set st G={A,B,C,D} & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D}; theorem :: BVFUNC20:4 for z,u being Element of Y, h being Function st G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D holds EqClass(u,B '/\' C '/\' D) meets EqClass(z,A); theorem :: BVFUNC20:5 for z,u being Element of Y st G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D & EqClass(z,C '/\' D)=EqClass(u,C '/\' D) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)); begin canceled 14; theorem :: BVFUNC20:20 G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D implies Ex('not' All(a,A,G),B,G) '<' 'not' All(All(a,B,G),A,G); canceled 2; theorem :: BVFUNC20:23 G is independent & G={A,B,C,D} & A<>B & A<>C & A<>D & B<>C & B<>D & C<>D implies Ex(Ex('not' a,A,G),B,G) '<' 'not' All(All(a,B,G),A,G);