Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Shunichi Kobayashi
- Received October 19, 1999
- MML identifier: BVFUNC15
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, T_1TOPSP, BOOLE,
FUNCT_1, SETFAM_1, RELAT_1, CANTOR_1, CAT_1, FUNCT_4;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1,
FRAENKEL, MARGREL1, SETFAM_1, EQREL_1, CANTOR_1, CQC_LANG, PARTIT1,
BVFUNC_1, BVFUNC_2, FUNCT_4;
constructors DOMAIN_1, AMI_1, CANTOR_1, BVFUNC_2, BVFUNC_1;
clusters SUBSET_1, FUNCT_7, PARTIT1, MARGREL1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Predicate Calculus
theorem :: BVFUNC15:1
for Y being non empty set,
a being Element of Funcs(Y,BOOLEAN),
G being Subset of PARTITIONS(Y),
A,B,C being a_partition of Y, z,u being Element of Y
st G is independent & G={A,B,C} & A<>B & B<>C & C<>A &
EqClass(z,C)=EqClass(u,C)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
Back to top