Lm1:
( ( for X being RealNormSpace
for x, y being Point of X holds
( ||.(x - y).|| = 0 iff x = y ) ) & ( for X being RealNormSpace
for x, y being Point of X holds
( ||.(x - y).|| <> 0 iff x <> y ) ) & ( for X being RealNormSpace
for x, y being Point of X holds
( ||.(x - y).|| > 0 iff x <> y ) ) & ( for X being RealNormSpace
for x, y being Point of X holds ||.(x - y).|| = ||.(y - x).|| ) & ( for X being RealNormSpace
for x, y, z being Point of X
for e being Real st e > 0 & ||.(x - z).|| < e / 2 & ||.(z - y).|| < e / 2 holds
||.(x - y).|| < e ) & ( for X being RealNormSpace
for x, y, z being Point of X
for e being Real st e > 0 & ||.(x - z).|| < e / 2 & ||.(y - z).|| < e / 2 holds
||.(x - y).|| < e ) & ( for X being RealNormSpace
for x being Point of X st ( for e being Real st e > 0 holds
||.x.|| < e ) holds
x = 0. X ) & ( for X being RealNormSpace
for x, y being Point of X st ( for e being Real st e > 0 holds
||.(x - y).|| < e ) holds
x = y ) )
Lm2:
for K, L, e being Real st 0 < K & K < 1 & 0 < e holds
ex n being Nat st |.(L * (K to_power n)).| < e