theorem Th10:
for
E being
set for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL st
f = g &
E c= dom f holds
(
f is_uniformly_continuous_on E iff for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2 being
Real st
[x1,y1] in E &
[x2,y2] in E &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r holds
|.((g . [x2,y2]) - (g . [x1,y1])).| < e ) ) )
Lm1:
for x, a being Real ex r being Real st
( 0 < r & x in ].(a - r),(a + r).[ )
Lm2:
for x, a, b being Real st a <= b holds
].(x - a),(x + a).[ c= ].(x - b),(x + b).[
theorem Th14:
for
A being
Subset of
[:RNS_Real,RNS_Real:] st ( for
a,
b being
Real st
[a,b] in A holds
ex
Rx being
real-membered set st
( not
Rx is
empty &
Rx is
bounded_above &
Rx = { r where r is Real : ( 0 < r & [:].(a - r),(a + r).[,].(b - r),(b + r).[:] c= A ) } ) ) holds
ex
F being
Function of
A,
REAL st
for
a,
b being
Real st
[a,b] in A holds
ex
Rx being
real-membered set st
( not
Rx is
empty &
Rx is
bounded_above &
Rx = { r where r is Real : ( 0 < r & [:].(a - r),(a + r).[,].(b - r),(b + r).[:] c= A ) } &
F . [a,b] = (upper_bound Rx) / 2 )
Lm3:
for A being set st A c= [:REAL,REAL:] & A /\ [:RAT,RAT:] <> {} holds
ex p being sequence of [:REAL,REAL:] st rng p = A /\ [:RAT,RAT:]
theorem Th18:
for
I,
J being
closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL st
f is_continuous_on [:I,J:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2 being
Real st
[x1,y1] in [:I,J:] &
[x2,y2] in [:I,J:] &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r holds
|.((g . [x2,y2]) - (g . [x1,y1])).| < e ) )
theorem Th23:
for
I,
J being
closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL st
f is_continuous_on [:I,J:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2 being
Real st
[x1,y1] in [:I,J:] &
[x2,y2] in [:I,J:] &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r holds
|.((|.g.| . [x2,y2]) - (|.g.| . [x1,y1])).| < e ) )
theorem Th30:
for
X,
Y being non
empty set for
f being
PartFunc of
[:X,Y:],
REAL for
x being
Element of
X for
y being
Element of
Y holds
(
ProjPMap1 (
(R_EAL f),
x) is
PartFunc of
Y,
REAL &
ProjPMap1 (
|.(R_EAL f).|,
x) is
PartFunc of
Y,
REAL &
ProjPMap2 (
(R_EAL f),
y) is
PartFunc of
X,
REAL &
ProjPMap2 (
|.(R_EAL f).|,
y) is
PartFunc of
X,
REAL )
theorem Th31:
for
X,
Y being non
empty set for
f being
PartFunc of
[:X,Y:],
REAL for
x being
Element of
X for
y being
Element of
Y holds
(
ProjPMap1 (
(R_EAL f),
x)
= R_EAL (ProjPMap1 (f,x)) &
ProjPMap1 (
|.(R_EAL f).|,
x)
= |.(R_EAL (ProjPMap1 (f,x))).| &
ProjPMap2 (
(R_EAL f),
y)
= R_EAL (ProjPMap2 (f,y)) &
ProjPMap2 (
|.(R_EAL f).|,
y)
= |.(R_EAL (ProjPMap2 (f,y))).| )
theorem Th41:
for
I being
Subset of
REAL for
J being non
empty closed_interval Subset of
REAL for
x being
Element of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
dom f = [:I,J:] &
f is_continuous_on [:I,J:] &
f = g &
Pg1 = ProjPMap1 (
(R_EAL g),
x) holds
(
Pg1 is_integrable_on L-Meas &
integral (
Pg1,
J)
= Integral (
L-Meas,
Pg1) &
integral (
Pg1,
J)
= Integral (
L-Meas,
(ProjPMap1 ((R_EAL g),x))) &
integral (
Pg1,
J)
= (Integral2 (L-Meas,(R_EAL g))) . x )
theorem Th43:
for
I being non
empty closed_interval Subset of
REAL for
J being
Subset of
REAL for
y being
Element of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
Pg2 being
PartFunc of
REAL,
REAL st
y in J &
dom f = [:I,J:] &
f is_continuous_on [:I,J:] &
f = g &
Pg2 = ProjPMap2 (
(R_EAL g),
y) holds
(
Pg2 is_integrable_on L-Meas &
integral (
Pg2,
I)
= Integral (
L-Meas,
Pg2) &
integral (
Pg2,
I)
= Integral (
L-Meas,
(ProjPMap2 ((R_EAL g),y))) &
integral (
Pg2,
I)
= (Integral1 (L-Meas,(R_EAL g))) . y )
theorem Th46:
for
I being
Subset of
REAL for
J being non
empty closed_interval Subset of
REAL for
x being
Element of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
dom f = [:I,J:] &
f is_continuous_on [:I,J:] &
f = g &
Pg1 = ProjPMap1 (
|.(R_EAL g).|,
x) holds
(
Pg1 is_integrable_on L-Meas &
integral (
Pg1,
J)
= Integral (
L-Meas,
Pg1) &
integral (
Pg1,
J)
= Integral (
L-Meas,
(ProjPMap1 (|.(R_EAL g).|,x))) &
integral (
Pg1,
J)
= (Integral2 (L-Meas,|.(R_EAL g).|)) . x )
theorem Th49:
for
I being non
empty closed_interval Subset of
REAL for
J being
Subset of
REAL for
y being
Element of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
Pg2 being
PartFunc of
REAL,
REAL st
y in J &
dom f = [:I,J:] &
f is_continuous_on [:I,J:] &
f = g &
Pg2 = ProjPMap2 (
|.(R_EAL g).|,
y) holds
(
Pg2 is_integrable_on L-Meas &
integral (
Pg2,
I)
= Integral (
L-Meas,
Pg2) &
integral (
Pg2,
I)
= Integral (
L-Meas,
(ProjPMap2 (|.(R_EAL g).|,y))) &
integral (
Pg2,
I)
= (Integral1 (L-Meas,|.(R_EAL g).|)) . y )
theorem Th51:
for
I being
Subset of
REAL for
J being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL st
[:I,J:] = dom f &
f is_continuous_on [:I,J:] &
f = g holds
(
(Integral2 (L-Meas,|.(R_EAL g).|)) | I is
PartFunc of
REAL,
REAL &
(Integral2 (L-Meas,(R_EAL g))) | I is
PartFunc of
REAL,
REAL )
Lm4:
for I, J being non empty closed_interval Subset of REAL
for f being PartFunc of [:RNS_Real,RNS_Real:],RNS_Real
for g being PartFunc of [:REAL,REAL:],REAL st [:I,J:] = dom f & f is_continuous_on [:I,J:] & f = g holds
( g is_integrable_on Prod_Measure (L-Meas,L-Meas) & ( for x being Element of REAL holds (Integral2 (L-Meas,|.(R_EAL g).|)) . x < +infty ) & ( for U being Element of L-Field holds Integral2 (L-Meas,(R_EAL g)) is U -measurable ) & Integral2 (L-Meas,(R_EAL g)) is_integrable_on L-Meas & Integral ((Prod_Measure (L-Meas,L-Meas)),g) = Integral (L-Meas,(Integral2 (L-Meas,(R_EAL g)))) )
theorem Th54:
for
I,
J being non
empty closed_interval Subset of
REAL for
g being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
f being
PartFunc of
[:REAL,REAL:],
REAL st
[:I,J:] = dom g &
g is_continuous_on [:I,J:] &
g = f holds
(
(Integral1 (L-Meas,|.(R_EAL f).|)) | J is
PartFunc of
REAL,
REAL &
(Integral1 (L-Meas,(R_EAL f))) | J is
PartFunc of
REAL,
REAL )
Lm5:
for I, J being non empty closed_interval Subset of REAL
for f being PartFunc of [:RNS_Real,RNS_Real:],RNS_Real
for g being PartFunc of [:REAL,REAL:],REAL st [:I,J:] = dom f & f is_continuous_on [:I,J:] & f = g holds
( g is_integrable_on Prod_Measure (L-Meas,L-Meas) & ( for y being Element of REAL holds (Integral1 (L-Meas,|.(R_EAL g).|)) . y < +infty ) & ( for V being Element of L-Field holds Integral1 (L-Meas,(R_EAL g)) is V -measurable ) & Integral1 (L-Meas,(R_EAL g)) is_integrable_on L-Meas & Integral ((Prod_Measure (L-Meas,L-Meas)),g) = Integral (L-Meas,(Integral1 (L-Meas,(R_EAL g)))) )
theorem
for
I,
J being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL st
[:I,J:] = dom f &
f is_continuous_on [:I,J:] &
f = g holds
(
g is_integrable_on Prod_Measure (
L-Meas,
L-Meas) & ( for
x being
Element of
REAL holds
(Integral2 (L-Meas,|.(R_EAL g).|)) . x < +infty ) & ( for
y being
Element of
REAL holds
(Integral1 (L-Meas,|.(R_EAL g).|)) . y < +infty ) & ( for
U being
Element of
L-Field holds
Integral2 (
L-Meas,
(R_EAL g)) is
U -measurable ) & ( for
V being
Element of
L-Field holds
Integral1 (
L-Meas,
(R_EAL g)) is
V -measurable ) &
Integral2 (
L-Meas,
(R_EAL g))
is_integrable_on L-Meas &
Integral1 (
L-Meas,
(R_EAL g))
is_integrable_on L-Meas &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
g)
= Integral (
L-Meas,
(Integral2 (L-Meas,(R_EAL g)))) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
g)
= Integral (
L-Meas,
(Integral1 (L-Meas,(R_EAL g)))) )
by Lm4, Lm5;
theorem
for
I,
J being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
G2 being
PartFunc of
REAL,
REAL st
[:I,J:] = dom f &
f is_continuous_on [:I,J:] &
f = g &
G2 = (Integral2 (L-Meas,(R_EAL g))) | I holds
Integral (
(Prod_Measure (L-Meas,L-Meas)),
(R_EAL g))
= integral (
G2,
I)
theorem
for
I,
J being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real for
g being
PartFunc of
[:REAL,REAL:],
REAL for
G1 being
PartFunc of
REAL,
REAL st
[:I,J:] = dom f &
f is_continuous_on [:I,J:] &
f = g &
G1 = (Integral1 (L-Meas,(R_EAL g))) | J holds
Integral (
(Prod_Measure (L-Meas,L-Meas)),
(R_EAL g))
= integral (
G1,
J)