Lm1:
for p1, p2 being Point of (TOP-REAL 2) holds
( |.(p1 - p2).| = 0 iff p1 = p2 )
Lm2:
for p1, p2 being Point of (TOP-REAL 2) holds |.(p1 - p2).| = |.(p2 - p1).|
theorem Th1:
for
p1,
p2,
p3,
p4,
p5,
p6 being
Point of
(TOP-REAL 2) st
sin (angle (p1,p2,p3)) = sin (angle (p4,p5,p6)) &
cos (angle (p1,p2,p3)) = cos (angle (p4,p5,p6)) holds
angle (
p1,
p2,
p3)
= angle (
p4,
p5,
p6)
Lm3:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) holds not angle (p1,p2,p3) = (2 * (angle (p4,p5,p6))) + (2 * PI)
Lm4:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) holds not angle (p1,p2,p3) = (2 * (angle (p4,p5,p6))) + (4 * PI)
Lm5:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) holds not angle (p1,p2,p3) = (2 * (angle (p4,p5,p6))) - (4 * PI)
Lm6:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) holds not angle (p1,p2,p3) = (2 * (angle (p4,p5,p6))) - (6 * PI)
Lm7:
for p1, p2, p3 being Point of (TOP-REAL 2)
for c1, c2 being Element of COMPLEX st c1 = euc2cpx (p1 - p2) & c2 = euc2cpx (p3 - p2) holds
angle (p1,p2,p3) = angle (c1,c2)
Lm8:
for c1, c2 being Element of COMPLEX st c2 = 0 holds
Arg (Rotate (c2,(- (Arg c1)))) = 0
Lm9:
for c1, c2 being Element of COMPLEX st c2 = 0 & Arg c1 = 0 holds
angle (c1,c2) = 0
Lm10:
for c1, c2 being Complex st c2 <> 0 & (Arg c2) - (Arg c1) >= 0 holds
Arg (Rotate (c2,(- (Arg c1)))) = (Arg c2) - (Arg c1)
Lm11:
for c1, c2 being Complex st c2 <> 0 & (Arg c2) - (Arg c1) >= 0 holds
angle (c1,c2) = (Arg c2) - (Arg c1)
Lm12:
for c1, c2 being Element of COMPLEX st c2 <> 0 & (Arg c2) - (Arg c1) < 0 holds
Arg (Rotate (c2,(- (Arg c1)))) = ((2 * PI) - (Arg c1)) + (Arg c2)
Lm13:
for c1, c2 being Element of COMPLEX st c2 <> 0 & (Arg c2) - (Arg c1) < 0 holds
angle (c1,c2) = ((2 * PI) - (Arg c1)) + (Arg c2)
Lm14:
for c1, c2, c3 being Element of COMPLEX holds
( (angle (c1,c2)) + (angle (c2,c3)) = angle (c1,c3) or (angle (c1,c2)) + (angle (c2,c3)) = (angle (c1,c3)) + (2 * PI) )
theorem Th4:
for
p1,
p2,
p3,
p4 being
Point of
(TOP-REAL 2) holds
(
(angle (p1,p4,p2)) + (angle (p2,p4,p3)) = angle (
p1,
p4,
p3) or
(angle (p1,p4,p2)) + (angle (p2,p4,p3)) = (angle (p1,p4,p3)) + (2 * PI) )
Lm15:
for p1, p2 being Point of (TOP-REAL 2) holds
( (p1 - p2) `1 = (p1 `1) - (p2 `1) & (p1 - p2) `2 = (p1 `2) - (p2 `2) )
Lm16:
for p1, p2, p3 being Point of (TOP-REAL 2)
for c1, c2 being Element of COMPLEX st c1 = euc2cpx (p1 - p2) & c2 = euc2cpx (p3 - p2) holds
( Re (c1 .|. c2) = (((p1 `1) - (p2 `1)) * ((p3 `1) - (p2 `1))) + (((p1 `2) - (p2 `2)) * ((p3 `2) - (p2 `2))) & Im (c1 .|. c2) = (- (((p1 `1) - (p2 `1)) * ((p3 `2) - (p2 `2)))) + (((p1 `2) - (p2 `2)) * ((p3 `1) - (p2 `1))) & |.c1.| = sqrt ((((p1 `1) - (p2 `1)) ^2) + (((p1 `2) - (p2 `2)) ^2)) & |.(p1 - p2).| = |.c1.| )
Lm17:
for p1, p2 being Point of (TOP-REAL 2)
for a, b, r being Real st p1 in inside_of_circle (a,b,r) & p2 in outside_of_circle (a,b,r) holds
ex p being Point of (TOP-REAL 2) st p in (LSeg (p1,p2)) /\ (circle (a,b,r))
theorem Th13:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p3) &
p <> p1 &
p <> p3 & not
(angle (p1,p,p2)) + (angle (p2,p,p3)) = PI holds
(angle (p1,p,p2)) + (angle (p2,p,p3)) = 3
* PI
theorem Th14:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p2) &
p <> p1 &
p <> p2 & (
angle (
p3,
p,
p1)
= PI / 2 or
angle (
p3,
p,
p1)
= (3 / 2) * PI ) holds
angle (
p1,
p,
p3)
= angle (
p3,
p,
p2)
theorem Th15:
for
p1,
p2,
p3,
p4,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p3) &
p in LSeg (
p2,
p4) &
p <> p1 &
p <> p2 &
p <> p3 &
p <> p4 holds
angle (
p1,
p,
p2)
= angle (
p3,
p,
p4)
theorem Th18:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
|.(p1 - p3).| = |.(p2 - p3).| &
p in LSeg (
p1,
p2) &
p <> p3 &
p <> p1 & (
angle (
p3,
p,
p1)
= PI / 2 or
angle (
p3,
p,
p1)
= (3 / 2) * PI ) holds
angle (
p1,
p3,
p)
= angle (
p,
p3,
p2)
theorem
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
|.(p1 - p3).| = |.(p2 - p3).| &
p in LSeg (
p1,
p2) &
p <> p3 holds
( (
angle (
p1,
p3,
p)
= angle (
p,
p3,
p2) implies
|.(p1 - p).| = |.(p - p2).| ) & (
|.(p1 - p).| = |.(p - p2).| implies
|((p3 - p),(p2 - p1))| = 0 ) & (
|((p3 - p),(p2 - p1))| = 0 implies
angle (
p1,
p3,
p)
= angle (
p,
p3,
p2) ) )
theorem Th20:
for
p1,
p2,
p3 being
Point of
(TOP-REAL 2) holds
(
p1,
p2,
p3 is_a_triangle iff (
p1,
p2,
p3 are_mutually_distinct &
angle (
p1,
p2,
p3)
<> PI &
angle (
p2,
p3,
p1)
<> PI &
angle (
p3,
p1,
p2)
<> PI ) )
Lm18:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) st p3 <> p2 & p3 <> p1 & p2 <> p1 & p5 <> p6 & p5 <> p4 & p6 <> p4 & angle (p1,p2,p3) <> PI & angle (p2,p3,p1) <> PI & angle (p3,p1,p2) <> PI & angle (p4,p5,p6) <> PI & angle (p5,p6,p4) <> PI & angle (p6,p4,p5) <> PI & angle (p1,p2,p3) = angle (p4,p5,p6) & angle (p3,p1,p2) = angle (p6,p4,p5) holds
|.(p3 - p2).| * |.(p4 - p6).| = |.(p1 - p3).| * |.(p6 - p5).|
theorem Th21:
for
p1,
p2,
p3,
p4,
p5,
p6 being
Point of
(TOP-REAL 2) st
p1,
p2,
p3 is_a_triangle &
p4,
p5,
p6 is_a_triangle &
angle (
p1,
p2,
p3)
= angle (
p4,
p5,
p6) &
angle (
p3,
p1,
p2)
= angle (
p6,
p4,
p5) holds
(
|.(p3 - p2).| * |.(p4 - p6).| = |.(p1 - p3).| * |.(p6 - p5).| &
|.(p3 - p2).| * |.(p5 - p4).| = |.(p2 - p1).| * |.(p6 - p5).| &
|.(p1 - p3).| * |.(p5 - p4).| = |.(p2 - p1).| * |.(p4 - p6).| )
Lm19:
for p1, p2, p3, p4, p5, p6 being Point of (TOP-REAL 2) st p3 <> p2 & p3 <> p1 & p2 <> p1 & p4 <> p5 & p4 <> p6 & p5 <> p6 & angle (p1,p2,p3) <> PI & angle (p2,p3,p1) <> PI & angle (p3,p1,p2) <> PI & angle (p4,p5,p6) <> PI & angle (p5,p6,p4) <> PI & angle (p6,p4,p5) <> PI & angle (p1,p2,p3) = angle (p4,p5,p6) & angle (p3,p1,p2) = angle (p5,p6,p4) holds
|.(p2 - p3).| * |.(p4 - p6).| = |.(p3 - p1).| * |.(p5 - p4).|
theorem Th22:
for
p1,
p2,
p3,
p4,
p5,
p6 being
Point of
(TOP-REAL 2) st
p1,
p2,
p3 is_a_triangle &
p4,
p5,
p6 is_a_triangle &
angle (
p1,
p2,
p3)
= angle (
p4,
p5,
p6) &
angle (
p3,
p1,
p2)
= angle (
p5,
p6,
p4) holds
(
|.(p2 - p3).| * |.(p4 - p6).| = |.(p3 - p1).| * |.(p5 - p4).| &
|.(p2 - p3).| * |.(p6 - p5).| = |.(p1 - p2).| * |.(p5 - p4).| &
|.(p3 - p1).| * |.(p6 - p5).| = |.(p1 - p2).| * |.(p4 - p6).| )
theorem Th23:
for
p1,
p2,
p3 being
Point of
(TOP-REAL 2) st
p1,
p2,
p3 are_mutually_distinct &
angle (
p1,
p2,
p3)
<= PI holds
(
angle (
p2,
p3,
p1)
<= PI &
angle (
p3,
p1,
p2)
<= PI )
theorem Th24:
for
p1,
p2,
p3 being
Point of
(TOP-REAL 2) st
p1,
p2,
p3 are_mutually_distinct &
angle (
p1,
p2,
p3)
> PI holds
(
angle (
p2,
p3,
p1)
> PI &
angle (
p3,
p1,
p2)
> PI )
Lm20:
for n being Element of NAT
for q1 being Point of (TOP-REAL n)
for f being Function of (TOP-REAL n),R^1 st ( for q being Point of (TOP-REAL n) holds f . q = |.(q - q1).| ) holds
f is continuous
Lm21:
for n being Element of NAT
for q1 being Point of (TOP-REAL n) ex f being Function of (TOP-REAL n),R^1 st
( ( for q being Point of (TOP-REAL n) holds f . q = |.(q - q1).| ) & f is continuous )
theorem Th25:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p2) &
p1,
p2,
p3 is_a_triangle &
angle (
p1,
p3,
p2)
= angle (
p,
p3,
p2) holds
p = p1
theorem Th26:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p2) & not
p3 in LSeg (
p1,
p2) &
angle (
p1,
p3,
p2)
<= PI holds
angle (
p,
p3,
p2)
<= angle (
p1,
p3,
p2)
theorem Th27:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p2) & not
p3 in LSeg (
p1,
p2) &
angle (
p1,
p3,
p2)
> PI &
p <> p2 holds
angle (
p,
p3,
p2)
>= angle (
p1,
p3,
p2)
theorem Th28:
for
p1,
p2,
p3,
p being
Point of
(TOP-REAL 2) st
p in LSeg (
p1,
p2) & not
p3 in LSeg (
p1,
p2) holds
ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 in LSeg (
p1,
p2) &
angle (
p1,
p3,
p4)
= angle (
p,
p3,
p2) )
theorem
for
p1,
p2 being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in inside_of_circle (
a,
b,
r) &
p2 in outside_of_circle (
a,
b,
r) holds
ex
p being
Point of
(TOP-REAL 2) st
p in (LSeg (p1,p2)) /\ (circle (a,b,r)) by Lm17;
theorem Th30:
for
p1,
p3,
p4,
p being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p4 in circle (
a,
b,
r) &
p in LSeg (
p1,
p3) &
p in LSeg (
p1,
p4) &
p3 <> p4 holds
p = p1
theorem Th31:
for
p1,
p2,
p,
pc being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p in circle (
a,
b,
r) &
pc = |[a,b]| &
pc in LSeg (
p,
p2) &
p1 <> p & not 2
* (angle (p1,p,p2)) = angle (
p1,
pc,
p2) holds
2
* ((angle (p1,p,p2)) - PI) = angle (
p1,
pc,
p2)
theorem Th33:
for
p1,
p2,
p,
pc being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p in circle (
a,
b,
r) &
pc = |[a,b]| &
p1 <> p &
p2 <> p & not 2
* (angle (p1,p,p2)) = angle (
p1,
pc,
p2) holds
2
* ((angle (p1,p,p2)) - PI) = angle (
p1,
pc,
p2)
theorem Th34:
for
p1,
p2,
p3,
p4 being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p4 in circle (
a,
b,
r) &
p1 <> p3 &
p1 <> p4 &
p2 <> p3 &
p2 <> p4 & not
angle (
p1,
p3,
p2)
= angle (
p1,
p4,
p2) & not
angle (
p1,
p3,
p2)
= (angle (p1,p4,p2)) - PI holds
angle (
p1,
p3,
p2)
= (angle (p1,p4,p2)) + PI
theorem Th35:
for
p1,
p2,
p3 being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p1 <> p2 &
p2 <> p3 holds
angle (
p1,
p2,
p3)
<> PI
Lm22:
for p1, p3, p4, p being Point of (TOP-REAL 2)
for a, b, r being Real st p1 in circle (a,b,r) & p3 in circle (a,b,r) & p4 in circle (a,b,r) & p in LSeg (p1,p3) & p in LSeg (p1,p4) holds
|.(p1 - p).| * |.(p - p3).| = |.(p1 - p).| * |.(p - p4).|
Lm23:
for p1, p2, p4, p being Point of (TOP-REAL 2)
for a, b, r being Real st p1 in circle (a,b,r) & p2 in circle (a,b,r) & p4 in circle (a,b,r) & p in LSeg (p1,p1) & p in LSeg (p2,p4) holds
|.(p1 - p).| * |.(p - p1).| = |.(p2 - p).| * |.(p - p4).|
theorem Th36:
for
p1,
p2,
p3,
p4,
p being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p4 in circle (
a,
b,
r) &
p in LSeg (
p1,
p3) &
p in LSeg (
p2,
p4) &
p1,
p2,
p3,
p4 are_mutually_distinct holds
angle (
p1,
p4,
p2)
= angle (
p1,
p3,
p2)
theorem Th37:
for
p1,
p2,
p3 being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
angle (
p1,
p2,
p3)
= 0 &
p1 <> p2 &
p2 <> p3 holds
p1 = p3
theorem
for
p1,
p2,
p3,
p4,
p being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p4 in circle (
a,
b,
r) &
p in LSeg (
p1,
p3) &
p in LSeg (
p2,
p4) holds
|.(p1 - p).| * |.(p - p3).| = |.(p2 - p).| * |.(p - p4).|
theorem
for
p1,
p2,
p3,
p4,
p being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
p1 in circle (
a,
b,
r) &
p2 in circle (
a,
b,
r) &
p3 in circle (
a,
b,
r) &
p4 in circle (
a,
b,
r) &
p in LSeg (
p1,
p3) &
p in LSeg (
p2,
p4) holds
|.(p3 - p1).| * |.(p4 - p2).| = (|.(p2 - p1).| * |.(p4 - p3).|) + (|.(p3 - p2).| * |.(p4 - p1).|)