theorem Th13:
for
n being
Nat for
An,
Bn,
Cn being
Point of
(TOP-REAL n) holds
(
((|(Bn,Cn)| - |(Cn,Cn)|) - |(An,Bn)|) + |(An,Cn)| = |((Cn - An),(Bn - Cn))| &
|((Bn - Cn),(Bn - Cn))| + |((Cn - An),(Bn - Cn))| = |((Bn - Cn),(Bn - An))| )
theorem Th17:
for
n being
Nat for
r,
s,
t being
Real for
An,
Bn,
Cn being
Point of
(TOP-REAL n) st
Bn <> Cn &
Cn <> An &
An <> Bn & not
|((Cn - An),(Bn - Cn))| is
zero & not
|((Bn - Cn),(An - Bn))| is
zero & not
|((Cn - An),(An - Bn))| is
zero &
r = - ((((|(Bn,Cn)| - |(Cn,Cn)|) - |(An,Bn)|) + |(An,Cn)|) / |((Bn - Cn),(Bn - Cn))|) &
s = - ((((|(Cn,An)| - |(An,An)|) - |(Bn,Cn)|) + |(Bn,An)|) / |((Cn - An),(Cn - An))|) &
t = - ((((|(An,Bn)| - |(Bn,Bn)|) - |(Cn,An)|) + |(Cn,Bn)|) / |((An - Bn),(An - Bn))|) holds
((((r / (1 - r)) * s) / (1 - s)) * t) / (1 - t) = 1
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
angle (
B,
A,
C)
<> angle (
C,
B,
A) holds
sin (((angle (B,A,C)) - (angle (C,B,A))) / 2) <> 0
theorem Th23:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
angle (
A,
C,
B)
= PI - ((angle (C,B,A)) + (angle (B,A,C)))
theorem Th24:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
(angle (B,A,C)) + (angle (C,B,A)) = PI - (angle (A,C,B))
theorem Th27:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
(
(- 2) * PI < (angle (B,A,C)) - (angle (C,B,A)) &
(angle (B,A,C)) - (angle (C,B,A)) < 2
* PI )
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
(
- PI < ((angle (B,A,C)) - (angle (C,B,A))) / 2 &
((angle (B,A,C)) - (angle (C,B,A))) / 2
< PI )
theorem Th28:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
B,
A,
C)
< PI holds
(
- PI < (angle (B,A,C)) - (angle (C,B,A)) &
(angle (B,A,C)) - (angle (C,B,A)) < PI )
theorem Th29:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
B,
A,
C)
< PI holds
(
- (PI / 2) < ((angle (B,A,C)) - (angle (C,B,A))) / 2 &
((angle (B,A,C)) - (angle (C,B,A))) / 2
< PI / 2 )
definition
let A,
B,
C be
Point of
(TOP-REAL 2);
assume A1:
B <> C
;
existence
ex b1, L1, L2 being Element of line_of_REAL 2 st
( b1 = L1 & L2 = Line (B,C) & A in L1 & L1 _|_ L2 )
uniqueness
for b1, b2 being Element of line_of_REAL 2 st ex L1, L2 being Element of line_of_REAL 2 st
( b1 = L1 & L2 = Line (B,C) & A in L1 & L1 _|_ L2 ) & ex L1, L2 being Element of line_of_REAL 2 st
( b2 = L1 & L2 = Line (B,C) & A in L1 & L1 _|_ L2 ) holds
b1 = b2
end;
definition
let A,
B,
C be
Point of
(TOP-REAL 2);
assume A1:
B <> C
;
existence
ex b1, P being Point of (TOP-REAL 2) st
( b1 = P & (the_altitude (A,B,C)) /\ (Line (B,C)) = {P} )
uniqueness
for b1, b2 being Point of (TOP-REAL 2) st ex P being Point of (TOP-REAL 2) st
( b1 = P & (the_altitude (A,B,C)) /\ (Line (B,C)) = {P} ) & ex P being Point of (TOP-REAL 2) st
( b2 = P & (the_altitude (A,B,C)) /\ (Line (B,C)) = {P} ) holds
b1 = b2
by ZFMISC_1:3;
end;
theorem Th48:
for
r being
Real for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
B <> C &
r = - ((((|(B,C)| - |(C,C)|) - |(A,B)|) + |(A,C)|) / |((B - C),(B - C))|) &
D = (r * B) + ((1 - r) * C) &
D <> C holds
D = the_foot_of_the_altitude (
A,
B,
C)
theorem Th49:
for
r being
Real for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
B <> C &
r = - ((((|(B,C)| - |(C,C)|) - |(A,B)|) + |(A,C)|) / |((B - C),(B - C))|) &
D = (r * B) + ((1 - r) * C) &
D = C holds
C = the_foot_of_the_altitude (
A,
B,
C)
theorem Th50:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle & not
|((C - A),(B - C))| is
zero & not
|((B - C),(A - B))| is
zero & not
|((C - A),(A - B))| is
zero holds
Line (
A,
(the_foot_of_the_altitude (A,B,C))),
Line (
C,
(the_foot_of_the_altitude (C,A,B))),
Line (
B,
(the_foot_of_the_altitude (B,C,A)))
are_concurrent
theorem Th52:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
C in the_altitude (
A,
B,
C) &
C in the_altitude (
B,
C,
A) holds
(the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) is
being_point
theorem Th53:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
B,
C,
A is_a_triangle &
C in the_altitude (
B,
C,
A) &
C in the_altitude (
C,
A,
B) holds
(the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) is
being_point
theorem Th54:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
C,
A,
B is_a_triangle &
C in the_altitude (
C,
A,
B) &
C in the_altitude (
A,
B,
C) holds
(the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) is
being_point
theorem Th55:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
|((C - A),(B - C))| = 0 holds
(
(the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {C} &
(the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {C} &
(the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {C} )
theorem Th56:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
ex
P being
Point of
(TOP-REAL 2) st
(
(the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {P} &
(the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {P} &
(the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {P} )
definition
let A,
B,
C be
Point of
(TOP-REAL 2);
assume A1:
A,
B,
C is_a_triangle
;
func the_orthocenter (
A,
B,
C)
-> Point of
(TOP-REAL 2) means
(
(the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {it} &
(the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {it} &
(the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {it} );
existence
ex b1 being Point of (TOP-REAL 2) st
( (the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {b1} & (the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {b1} & (the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {b1} )
by A1, Th56;
uniqueness
for b1, b2 being Point of (TOP-REAL 2) st (the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {b1} & (the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {b1} & (the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {b1} & (the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {b2} & (the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {b2} & (the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {b2} holds
b1 = b2
by ZFMISC_1:3;
end;
::
deftheorem defines
the_orthocenter EUCLID13:def 4 :
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle holds
for b4 being Point of (TOP-REAL 2) holds
( b4 = the_orthocenter (A,B,C) iff ( (the_altitude (A,B,C)) /\ (the_altitude (B,C,A)) = {b4} & (the_altitude (B,C,A)) /\ (the_altitude (C,A,B)) = {b4} & (the_altitude (C,A,B)) /\ (the_altitude (A,B,C)) = {b4} ) );
theorem Th57:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
B <> A holds
((sin (angle (B,A,C))) + (sin (angle (C,B,A)))) * (|.(C - B).| - |.(C - A).|) = ((sin (angle (B,A,C))) - (sin (angle (C,B,A)))) * (|.(C - B).| + |.(C - A).|)
theorem Th58:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
B <> A holds
((sin (((angle (B,A,C)) + (angle (C,B,A))) / 2)) * (cos (((angle (B,A,C)) - (angle (C,B,A))) / 2))) * (|.(C - B).| - |.(C - A).|) = ((sin (((angle (B,A,C)) - (angle (C,B,A))) / 2)) * (cos (((angle (B,A,C)) + (angle (C,B,A))) / 2))) * (|.(C - B).| + |.(C - A).|)
theorem Th59:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
(angle (B,A,C)) - (angle (C,B,A)) <> PI &
(angle (B,A,C)) - (angle (C,B,A)) <> - PI holds
cos (((angle (B,A,C)) - (angle (C,B,A))) / 2) <> 0
theorem Th60:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
tan (((angle (B,A,C)) - (angle (C,B,A))) / 2) = (cot ((angle (A,C,B)) / 2)) * ((|.(C - B).| - |.(C - A).|) / (|.(C - B).| + |.(C - A).|))
theorem Th61:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
((angle (B,A,C)) - (angle (C,B,A))) / 2
= arctan ((cot ((angle (A,C,B)) / 2)) * ((|.(C - B).| - |.(C - A).|) / (|.(C - B).| + |.(C - A).|)))
theorem Th62:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
(angle (B,A,C)) - (angle (C,B,A)) = 2
* (arctan ((cot ((angle (A,C,B)) / 2)) * ((|.(C - B).| - |.(C - A).|) / (|.(C - B).| + |.(C - A).|))))
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
(
angle (
B,
A,
C)
= ((arctan ((cot ((angle (A,C,B)) / 2)) * ((|.(C - B).| - |.(C - A).|) / (|.(C - B).| + |.(C - A).|)))) + (PI / 2)) - ((angle (A,C,B)) / 2) &
angle (
C,
B,
A)
= ((PI / 2) - ((angle (A,C,B)) / 2)) - (arctan ((cot ((angle (A,C,B)) / 2)) * ((|.(C - B).| - |.(C - A).|) / (|.(C - B).| + |.(C - A).|)))) )
theorem Th63:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
|.(B - C).| = (|.(A - B).| * (sin (angle (B,A,C)))) / (sin ((angle (B,A,C)) + (angle (C,B,A))))
theorem Th64:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI holds
|.(A - C).| = (|.(A - B).| * (sin (angle (C,B,A)))) / (sin ((angle (B,A,C)) + (angle (C,B,A))))
theorem Th65:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
C,
A,
B)
= PI / 2 holds
the_length_of_the_altitude (
C,
A,
B)
= |.(A - B).| * (tan (angle (A,B,C)))
theorem Th66:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
C,
A,
B)
= (3 / 2) * PI holds
the_length_of_the_altitude (
C,
A,
B)
= |.(A - B).| * (tan (angle (C,B,A)))
theorem Th67:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
B <> C &
the_foot_of_the_altitude (
A,
B,
C),
B,
A is_a_triangle & not
|.(A - B).| * (sin (angle (A,B,(the_foot_of_the_altitude (A,B,C))))) = |.((the_foot_of_the_altitude (A,B,C)) - A).| holds
|.(A - B).| * (- (sin (angle (A,B,(the_foot_of_the_altitude (A,B,C)))))) = |.((the_foot_of_the_altitude (A,B,C)) - A).|
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
|((B - A),(B - C))| <> 0 & not
|.(A - B).| * (sin (angle (A,B,(the_foot_of_the_altitude (A,B,C))))) = |.((the_foot_of_the_altitude (A,B,C)) - A).| holds
|.(A - B).| * (- (sin (angle (A,B,(the_foot_of_the_altitude (A,B,C)))))) = |.((the_foot_of_the_altitude (A,B,C)) - A).|
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI &
|((A - C),(A - B))| <> 0 holds
the_length_of_the_altitude (
C,
A,
B)
= |.(A - B).| * |.(((sin (angle (C,B,A))) / (sin ((angle (B,A,C)) + (angle (C,B,A))))) * (sin (angle (C,A,(the_foot_of_the_altitude (C,A,B)))))).|
theorem
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
0 < angle (
B,
A,
D) &
angle (
B,
A,
D)
< PI &
0 < angle (
D,
A,
C) &
angle (
D,
A,
C)
< PI &
D,
A,
C are_mutually_distinct &
B,
A,
D are_mutually_distinct holds
(angle (A,C,D)) + (angle (D,B,A)) = (2 * PI) - (((angle (B,A,C)) + (angle (A,D,B))) + (angle (C,D,A)))
theorem Th68:
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) for
a,
b,
c,
d being
Real st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI &
A,
D,
B is_a_triangle &
angle (
A,
D,
B)
< PI &
a = angle (
C,
B,
A) &
b = angle (
B,
A,
C) &
c = angle (
D,
B,
A) &
d = angle (
C,
A,
D) holds
|.(D - C).| ^2 = (|.(A - B).| ^2) * (((((sin a) / (sin (a + b))) ^2) + (((sin c) / (sin ((b + d) + c))) ^2)) - (((2 * ((sin a) / (sin (b + a)))) * ((sin c) / (sin ((b + d) + c)))) * (cos d)))
theorem
for
s being
Real for
A,
B,
C,
D being
Point of
(TOP-REAL 2) for
a,
b,
c,
d,
R,
theta being
Real st
D <> C &
0 <= R &
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI &
A,
D,
B is_a_triangle &
angle (
A,
D,
B)
< PI &
a = angle (
C,
B,
A) &
b = angle (
B,
A,
C) &
c = angle (
D,
B,
A) &
d = angle (
C,
A,
D) &
R * (cos s) = (sin a) / (sin (a + b)) &
R * (sin s) = (sin c) / (sin ((b + d) + c)) &
0 < theta &
theta < PI &
(sin (2 * s)) * (cos d) = cos (2 * theta) holds
|.(D - C).| = ((|.(A - B).| * (sqrt 2)) * R) * (sin theta)
theorem Th70:
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI &
D,
A,
C is_a_triangle &
angle (
A,
D,
C)
= PI / 2 holds
|.(D - C).| = ((|.(A - B).| * (sin (angle (C,B,A)))) / (sin ((angle (B,A,C)) + (angle (C,B,A))))) * (sin (angle (C,A,D)))
theorem Th71:
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
B,
C,
A is_a_triangle &
angle (
B,
C,
A)
< PI &
D,
C,
A is_a_triangle &
angle (
C,
D,
A)
= PI / 2 holds
|.(D - C).| = ((|.(A - B).| * (sin (angle (A,B,C)))) / (sin ((angle (A,B,C)) + (angle (C,A,B))))) * (sin (angle (D,A,C)))
theorem
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
A,
C,
B is_a_triangle &
angle (
A,
C,
B)
< PI &
D,
A,
C is_a_triangle &
angle (
A,
D,
C)
= PI / 2 &
A in LSeg (
B,
D) &
A <> D holds
|.(D - C).| = ((|.(A - B).| * (sin (angle (C,B,A)))) / (sin ((angle (C,A,D)) - (angle (C,B,A))))) * (sin (angle (C,A,D)))
theorem
for
A,
B,
C,
D being
Point of
(TOP-REAL 2) st
B,
C,
A is_a_triangle &
angle (
B,
C,
A)
< PI &
D,
C,
A is_a_triangle &
angle (
C,
D,
A)
= PI / 2 &
A in LSeg (
D,
B) &
A <> D holds
|.(D - C).| = ((|.(A - B).| * (sin (angle (A,B,C)))) / (sin ((angle (D,A,C)) - (angle (A,B,C))))) * (sin (angle (D,A,C)))
::
:: A f B
:: C
::
:: f A B
:: C
::
:: A B f