Lm1:
angle (|[0,0]|,|[0,1]|,|[((sqrt 3) / 2),(1 / 2)]|) < PI
Lm2:
|.|[((sqrt 3) / 2),(1 / 2)]|.| = 1
Lm3:
for O, A, B being Point of (TOP-REAL 2) st O = |[0,0]| & A = |[0,1]| & B = |[((sqrt 3) / 2),(1 / 2)]| holds
( |.(O - A).| = |.(O - B).| & |.(O - A).| = |.(A - B).| & |.(O - A).| = 1 )
Lm4:
for O, A, B being Point of (TOP-REAL 2) st O = |[0,0]| & A = |[0,1]| & B = |[((sqrt 3) / 2),(1 / 2)]| holds
( O <> A & A <> B & O <> B & A <> O & B <> A & B <> O )
Lm5:
for O, A, B being Point of (TOP-REAL 2) st O = |[0,0]| & A = |[0,1]| & B = |[((sqrt 3) / 2),(1 / 2)]| holds
( angle (B,O,A) = angle (O,A,B) & angle (O,A,B) = angle (A,B,O) )
Lm6:
for O, A, B being Point of (TOP-REAL 2) st O = |[0,0]| & A = |[0,1]| & B = |[((sqrt 3) / 2),(1 / 2)]| & angle (O,A,B) < PI holds
angle (B,O,A) = PI / 3
Lm7:
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle holds
angle (A,B,C) <> 0
theorem Thm19:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
( not
angle (
A,
B,
C) is
zero & not
angle (
B,
C,
A) is
zero & not
angle (
C,
A,
B) is
zero & not
angle (
A,
C,
B) is
zero & not
angle (
C,
B,
A) is
zero & not
angle (
B,
A,
C) is
zero )
Lm9:
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle holds
( angle (A,B,C) = (2 * PI) - (angle (C,B,A)) & angle (C,B,A) = (2 * PI) - (angle (A,B,C)) )
theorem Thm20:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
(
angle (
A,
B,
C)
= (2 * PI) - (angle (C,B,A)) &
angle (
B,
C,
A)
= (2 * PI) - (angle (A,C,B)) &
angle (
C,
A,
B)
= (2 * PI) - (angle (B,A,C)) &
angle (
B,
A,
C)
= (2 * PI) - (angle (C,A,B)) &
angle (
A,
C,
B)
= (2 * PI) - (angle (B,C,A)) &
angle (
C,
B,
A)
= (2 * PI) - (angle (A,B,C)) )
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
B,
A,
C)
= PI / 2 holds
(angle (C,B,A)) + (angle (A,C,B)) = PI / 2
theorem Thm21:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
B,
A,
C)
= PI / 2 holds
(
|.(C - B).| * (sin (angle (C,B,A))) = |.(A - C).| &
|.(C - B).| * (sin (angle (A,C,B))) = |.(A - B).| &
|.(C - B).| * (cos (angle (C,B,A))) = |.(A - B).| &
|.(C - B).| * (cos (angle (A,C,B))) = |.(A - C).| )
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
B,
A,
C)
= PI / 2 holds
(
tan (angle (A,C,B)) = |.(A - B).| / |.(A - C).| &
tan (angle (C,B,A)) = |.(A - C).| / |.(A - B).| )
theorem Thm24:
for
A,
B,
C being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
A,
B,
C is_a_triangle &
A in circle (
a,
b,
r) &
B in circle (
a,
b,
r) holds
r is
positive
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) for
a,
b,
r being
Real st
A,
B,
C is_a_triangle &
angle (
C,
B,
A)
in ].0,PI.[ &
angle (
B,
A,
C)
in ].0,PI.[ &
A in circle (
a,
b,
r) &
B in circle (
a,
b,
r) &
C in circle (
a,
b,
r) &
|[a,b]| in LSeg (
A,
C) holds
angle (
C,
B,
A)
= PI / 2
theorem Thm26:
for
A,
B,
C being
Point of
(TOP-REAL 2) for
r being
positive Real st not
angle (
A,
B,
C) is
zero holds
sin (r * (angle (C,B,A))) = ((sin ((r * 2) * PI)) * (cos (r * (angle (A,B,C))))) - ((cos ((r * 2) * PI)) * (sin (r * (angle (A,B,C)))))
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st not
angle (
A,
B,
C) is
zero holds
sin ((angle (C,B,A)) / 3) = (((sqrt 3) / 2) * (cos ((angle (A,B,C)) / 3))) + ((1 / 2) * (sin ((angle (A,B,C)) / 3)))
theorem Thm27:
for
A,
B,
C being
Point of
(TOP-REAL 2) holds
(
the_area_of_polygon3 (
A,
B,
C)
= the_area_of_polygon3 (
B,
C,
A) &
the_area_of_polygon3 (
A,
B,
C)
= the_area_of_polygon3 (
C,
A,
B) )
Lm10:
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle holds
|.(A - B).| = (the_diameter_of_the_circumcircle (A,B,C)) * (sin (angle (A,C,B)))
theorem Thm34:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
(
|.(A - B).| = (the_diameter_of_the_circumcircle (A,B,C)) * (sin (angle (A,C,B))) &
|.(B - C).| = (the_diameter_of_the_circumcircle (A,B,C)) * (sin (angle (B,A,C))) &
|.(C - A).| = (the_diameter_of_the_circumcircle (A,B,C)) * (sin (angle (C,B,A))) )
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
|.(A - B).| = ((((the_diameter_of_the_circumcircle (A,B,C)) * 4) * (sin ((angle (A,C,B)) / 3))) * (sin ((PI / 3) + ((angle (A,C,B)) / 3)))) * (sin ((PI / 3) - ((angle (A,C,B)) / 3)))
theorem
for
A,
B,
C,
P being
Point of
(TOP-REAL 2) st
A,
B,
P are_mutually_distinct &
angle (
P,
B,
A)
= (angle (C,B,A)) / 3 &
angle (
B,
A,
P)
= (angle (B,A,C)) / 3 &
angle (
A,
P,
B)
< PI holds
|.(A - P).| * (sin (PI - (((angle (C,B,A)) / 3) + ((angle (B,A,C)) / 3)))) = |.(A - B).| * (sin ((angle (C,B,A)) / 3))
Lm11:
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle & angle (C,B,A) < PI holds
( ((angle (C,B,A)) + (angle (B,A,C))) + (angle (A,C,B)) = PI & ((angle (C,A,B)) + (angle (A,B,C))) + (angle (B,C,A)) = 5 * PI )
Lm12:
for A, B, C being Point of (TOP-REAL 2) st A,B,C is_a_triangle & angle (C,B,A) < PI holds
(((angle (C,B,A)) / 3) + ((angle (B,A,C)) / 3)) + ((angle (A,C,B)) / 3) = PI / 3
theorem Thm35:
for
A,
B,
C,
P being
Point of
(TOP-REAL 2) st
A,
B,
P are_mutually_distinct &
angle (
P,
B,
A)
= (angle (C,B,A)) / 3 &
angle (
B,
A,
P)
= (angle (B,A,C)) / 3 &
angle (
A,
P,
B)
< PI &
(((angle (C,B,A)) / 3) + ((angle (B,A,C)) / 3)) + ((angle (A,C,B)) / 3) = PI / 3 holds
|.(A - P).| * (sin (((2 * PI) / 3) + ((angle (A,C,B)) / 3))) = |.(A - B).| * (sin ((angle (C,B,A)) / 3))
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
C,
A,
B)
< PI holds
(
((angle (C,B,A)) + (angle (B,A,C))) + (angle (A,C,B)) = 5
* PI &
((angle (C,A,B)) + (angle (A,B,C))) + (angle (B,C,A)) = PI )
theorem
for
A,
B,
C,
P being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
angle (
C,
B,
A)
< PI &
A,
B,
P are_mutually_distinct &
angle (
P,
B,
A)
= (angle (C,B,A)) / 3 &
angle (
B,
A,
P)
= (angle (B,A,C)) / 3 &
angle (
A,
P,
B)
< PI holds
|.(A - P).| * (sin ((PI / 3) - ((angle (A,C,B)) / 3))) = |.(A - B).| * (sin ((angle (C,B,A)) / 3))
theorem
for
A,
B,
C,
P being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
A,
B,
P is_a_triangle &
angle (
C,
B,
A)
< PI &
angle (
A,
P,
B)
< PI &
angle (
P,
B,
A)
= (angle (C,B,A)) / 3 &
angle (
B,
A,
P)
= (angle (B,A,C)) / 3 &
sin ((PI / 3) - ((angle (A,C,B)) / 3)) <> 0 holds
|.(A - P).| = - (((((the_diameter_of_the_circumcircle (C,B,A)) * 4) * (sin ((angle (A,C,B)) / 3))) * (sin ((PI / 3) + ((angle (A,C,B)) / 3)))) * (sin ((angle (C,B,A)) / 3)))
theorem Thm38:
for
A,
B being
Point of
(TOP-REAL 2) for
a,
b being
Real for
r being
positive Real st
A,
B,
|[a,b]| are_mutually_distinct &
A in circle (
a,
b,
r) &
B in circle (
a,
b,
r) &
|[a,b]| in LSeg (
A,
B) holds
|.(A - B).| = 2
* r