registration
let X be
RealLinearSpace;
coherence
( RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is Abelian & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is add-associative & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is right_zeroed & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is right_complementable & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is scalar-distributive & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is vector-distributive & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is scalar-associative & RLSStruct(# (LinearFunctionals X),(Zero_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Add_ ((LinearFunctionals X),(RealVectSpace the carrier of X))),(Mult_ ((LinearFunctionals X),(RealVectSpace the carrier of X))) #) is scalar-unital )
by Th17, RSSPACE:11;
end;
Th21X:
for X being RealNormSpace
for F being Functional of X st F = the carrier of X --> 0 holds
( F is linear-Functional of X & F is Lipschitzian )
registration
let X be
RealNormSpace;
coherence
( RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is Abelian & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is add-associative & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is right_zeroed & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is right_complementable & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is vector-distributive & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is scalar-distributive & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is scalar-associative & RLSStruct(# (BoundedLinearFunctionals X),(Zero_ ((BoundedLinearFunctionals X),(X *'))),(Add_ ((BoundedLinearFunctionals X),(X *'))),(Mult_ ((BoundedLinearFunctionals X),(X *'))) #) is scalar-unital )
by Th22, RSSPACE:11;
end;
Th27:
for X being RealNormSpace
for g being Lipschitzian linear-Functional of X holds PreNorms g is bounded_above
Lm3:
for e being Real
for seq being Real_Sequence st seq is convergent & ex k being Nat st
for i being Nat st k <= i holds
seq . i <= e holds
lim seq <= e