theorem Th4:
for
i,
j,
n being
Nat for
K being
Field for
A,
B being
Matrix of
n,
K st
i in Seg n &
j in Seg n holds
Delete (
(A + B),
i,
j)
= (Delete (A,i,j)) + (Delete (B,i,j))
Lm1:
for K being Field
for V1, V2 being VectSp of K
for f being linear-transformation of V1,V2
for W1 being Subspace of V1
for W2 being Subspace of V2
for F being Function of W1,W2 st F = f | W1 holds
F is linear-transformation of W1,W2
Lm2:
for K being Field
for V being non trivial VectSp of K holds
( id V is with_eigenvalues & ex v being Vector of V st
( v <> 0. V & (id V) . v = (1_ K) * v ) )
Lm3:
for K being Field
for V1 being VectSp of K
for f being linear-transformation of V1,V1
for a, b being Scalar of K holds (a * b) * f = a * (b * f)
Lm4:
for K being Field
for V1 being VectSp of K
for L being Scalar of K
for f, g being Function of V1,V1 holds L * (f * g) = (L * f) * g
Lm5:
for K being Field
for V1 being VectSp of K
for L being Scalar of K
for f, g being Function of V1,V1 st f is additive & f is homogeneous holds
L * (f * g) = f * (L * g)
Lm6:
for K being Field
for V1 being VectSp of K
for f1, f2, g being Function of V1,V1 holds (f1 + f2) * g = (f1 * g) + (f2 * g)
Lm7:
for K being Field
for V1 being VectSp of K
for f1, f2, g being Function of V1,V1 st g is additive & g is homogeneous holds
g * (f1 + f2) = (g * f1) + (g * f2)
Lm8:
for K being Field
for V1 being VectSp of K
for f1, f2, f3 being Function of V1,V1 holds (f1 + f2) + f3 = f1 + (f2 + f3)
Lm9:
for n being Nat
for K being Field
for V1 being VectSp of K
for L being Scalar of K holds (L * (id V1)) |^ n = ((power K) . (L,n)) * (id V1)
Lm10:
for K being Field
for V1 being VectSp of K
for f being linear-transformation of V1,V1
for a, b being Scalar of K holds (a + b) * f = (a * f) + (b * f)