definition
let x0 be
pair object ;
let x be
object ;
existence
ex b1 being Function st
( dom b1 = NAT & b1 . 0 = x0 & ( for n being Nat holds
( b1 . n is pair & (b1 . (n + 1)) `1 = (L_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(R_ (b1 . n)))) & (b1 . (n + 1)) `2 = ((R_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(L_ (b1 . n))))) \/ (sqrt (x,(R_ (b1 . n)),(R_ (b1 . n)))) ) ) )
uniqueness
for b1, b2 being Function st dom b1 = NAT & b1 . 0 = x0 & ( for n being Nat holds
( b1 . n is pair & (b1 . (n + 1)) `1 = (L_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(R_ (b1 . n)))) & (b1 . (n + 1)) `2 = ((R_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(L_ (b1 . n))))) \/ (sqrt (x,(R_ (b1 . n)),(R_ (b1 . n)))) ) ) & dom b2 = NAT & b2 . 0 = x0 & ( for n being Nat holds
( b2 . n is pair & (b2 . (n + 1)) `1 = (L_ (b2 . n)) \/ (sqrt (x,(L_ (b2 . n)),(R_ (b2 . n)))) & (b2 . (n + 1)) `2 = ((R_ (b2 . n)) \/ (sqrt (x,(L_ (b2 . n)),(L_ (b2 . n))))) \/ (sqrt (x,(R_ (b2 . n)),(R_ (b2 . n)))) ) ) holds
b1 = b2
end;
theorem Th8:
for
n being
Nat for
o being
object for
p being
pair object holds
(
(sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) &
(sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )
definition
let A be
Ordinal;
existence
ex b1 being ManySortedSet of Day A ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) )
uniqueness
for b1, b2 being ManySortedSet of Day A st ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) & ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b2 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) holds
b1 = b2
end;
theorem Th17:
for
x1,
x2,
y,
z being
Surreal st not
x2 == 0_No &
y = x1 * (x2 ") holds
( (
y * y < z implies
x1 * x1 < z * (x2 * x2) ) & (
x1 * x1 < z * (x2 * x2) implies
y * y < z ) & (
z < y * y implies
z * (x2 * x2) < x1 * x1 ) & (
z * (x2 * x2) < x1 * x1 implies
z < y * y ) )
Lm1:
for x, y, z being Surreal holds z * ((x + y) * (x + y)) == ((z * (x * x)) + (z * (y * y))) + ((z * (x * y)) + (z * (y * x)))
Lm2:
for x, y, z being Surreal holds ((x * x) + ((y * z) * (y * z))) - ((x * (y * y)) + (x * (z * z))) == (x - (y * y)) * (x - (z * z))