definition
let Lamb be
set ;
let x be
object ;
let X be
set ;
let Inv be
Function;
existence
ex b1 being set st
for o being object holds
( o in b1 iff ex lamb being object st
( lamb in Lamb & o in divs (lamb,x,X,Inv) ) )
uniqueness
for b1, b2 being set st ( for o being object holds
( o in b1 iff ex lamb being object st
( lamb in Lamb & o in divs (lamb,x,X,Inv) ) ) ) & ( for o being object holds
( o in b2 iff ex lamb being object st
( lamb in Lamb & o in divs (lamb,x,X,Inv) ) ) ) holds
b1 = b2
end;
definition
let x be
object ;
let Inv be
Function;
func transitions_of (
x,
Inv)
-> Function means :
Def4:
(
dom it = NAT &
it . 0 = 1_No & ( for
k being
Nat holds
(
it . k is
pair &
(it . (k + 1)) `1 = ((L_ (it . k)) \/ (divset ((L_ (it . k)),x,(R_ x),Inv))) \/ (divset ((R_ (it . k)),x,(L_ x),Inv)) &
(it . (k + 1)) `2 = ((R_ (it . k)) \/ (divset ((L_ (it . k)),x,(L_ x),Inv))) \/ (divset ((R_ (it . k)),x,(R_ x),Inv)) ) ) );
existence
ex b1 being Function st
( dom b1 = NAT & b1 . 0 = 1_No & ( for k being Nat holds
( b1 . k is pair & (b1 . (k + 1)) `1 = ((L_ (b1 . k)) \/ (divset ((L_ (b1 . k)),x,(R_ x),Inv))) \/ (divset ((R_ (b1 . k)),x,(L_ x),Inv)) & (b1 . (k + 1)) `2 = ((R_ (b1 . k)) \/ (divset ((L_ (b1 . k)),x,(L_ x),Inv))) \/ (divset ((R_ (b1 . k)),x,(R_ x),Inv)) ) ) )
uniqueness
for b1, b2 being Function st dom b1 = NAT & b1 . 0 = 1_No & ( for k being Nat holds
( b1 . k is pair & (b1 . (k + 1)) `1 = ((L_ (b1 . k)) \/ (divset ((L_ (b1 . k)),x,(R_ x),Inv))) \/ (divset ((R_ (b1 . k)),x,(L_ x),Inv)) & (b1 . (k + 1)) `2 = ((R_ (b1 . k)) \/ (divset ((L_ (b1 . k)),x,(L_ x),Inv))) \/ (divset ((R_ (b1 . k)),x,(R_ x),Inv)) ) ) & dom b2 = NAT & b2 . 0 = 1_No & ( for k being Nat holds
( b2 . k is pair & (b2 . (k + 1)) `1 = ((L_ (b2 . k)) \/ (divset ((L_ (b2 . k)),x,(R_ x),Inv))) \/ (divset ((R_ (b2 . k)),x,(L_ x),Inv)) & (b2 . (k + 1)) `2 = ((R_ (b2 . k)) \/ (divset ((L_ (b2 . k)),x,(L_ x),Inv))) \/ (divset ((R_ (b2 . k)),x,(R_ x),Inv)) ) ) holds
b1 = b2
end;
::
deftheorem Def4 defines
transitions_of SURREALI:def 4 :
for x being object
for Inv, b3 being Function holds
( b3 = transitions_of (x,Inv) iff ( dom b3 = NAT & b3 . 0 = 1_No & ( for k being Nat holds
( b3 . k is pair & (b3 . (k + 1)) `1 = ((L_ (b3 . k)) \/ (divset ((L_ (b3 . k)),x,(R_ x),Inv))) \/ (divset ((R_ (b3 . k)),x,(L_ x),Inv)) & (b3 . (k + 1)) `2 = ((R_ (b3 . k)) \/ (divset ((L_ (b3 . k)),x,(L_ x),Inv))) \/ (divset ((R_ (b3 . k)),x,(R_ x),Inv)) ) ) ) );
theorem Th6:
for
n being
Nat for
o being
object for
Inv being
Function holds
(
(divL (o,Inv)) . (n + 1) = (((divL (o,Inv)) . n) \/ (divset (((divL (o,Inv)) . n),o,(R_ o),Inv))) \/ (divset (((divR (o,Inv)) . n),o,(L_ o),Inv)) &
(divR (o,Inv)) . (n + 1) = (((divR (o,Inv)) . n) \/ (divset (((divL (o,Inv)) . n),o,(L_ o),Inv))) \/ (divset (((divR (o,Inv)) . n),o,(R_ o),Inv)) )
Lm1:
for x being Surreal st 0_No < x holds
ex y being Surreal st
( y == x & ( for z being Surreal holds
( z in L_ y iff ( z = 0_No or ( z in L_ x & 0_No < z ) ) ) ) & ( for z being Surreal holds
( z in R_ y iff ( z in R_ x & 0_No < z ) ) ) )
definition
let A be
Ordinal;
existence
ex b1 being ManySortedSet of Positives A ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Positives B st
( S . B = SB & ( for x being object st x in Positives B holds
SB . x = [(Union (divL (||.x.||,(union (rng (S | B)))))),(Union (divR (||.x.||,(union (rng (S | B))))))] ) ) ) )
uniqueness
for b1, b2 being ManySortedSet of Positives A st ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Positives B st
( S . B = SB & ( for x being object st x in Positives B holds
SB . x = [(Union (divL (||.x.||,(union (rng (S | B)))))),(Union (divR (||.x.||,(union (rng (S | B))))))] ) ) ) ) & ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b2 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Positives B st
( S . B = SB & ( for x being object st x in Positives B holds
SB . x = [(Union (divL (||.x.||,(union (rng (S | B)))))),(Union (divR (||.x.||,(union (rng (S | B))))))] ) ) ) ) holds
b1 = b2
end;
Lm2:
for x being Surreal st x is positive holds
( inv x is surreal & ( for y being Surreal st y = inv x holds
x * y == 1_No ) )
theorem
for
x,
y being
Surreal st
x is
positive &
y = [(({0_No} \/ (divset ((R_ x),x,(L_ (x "))))) \/ (divset ((L_ x),x,(R_ (x "))))),((divset ((L_ x),x,(L_ (x ")))) \/ (divset ((R_ x),x,(R_ (x ")))))] holds
x " == y