Lm1:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds W1 + W2 = W2 + W1
Lm2:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds the carrier of W1 c= the carrier of (W1 + W2)
Lm3:
for R being Ring
for V being RightMod of R
for W1 being Submodule of V
for W2 being strict Submodule of V st the carrier of W1 c= the carrier of W2 holds
W1 + W2 = W2
Lm4:
for R being Ring
for V being RightMod of R
for W, W9, W1 being Submodule of V st the carrier of W = the carrier of W9 holds
( W1 + W = W1 + W9 & W + W1 = W9 + W1 )
Lm5:
for R being Ring
for V being RightMod of R
for W being Submodule of V holds W is Submodule of (Omega). V
Lm6:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds the carrier of (W1 /\ W2) c= the carrier of W1
Lm7:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds the carrier of (W1 /\ W2) c= the carrier of (W1 + W2)
Lm8:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds the carrier of ((W1 /\ W2) + W2) = the carrier of W2
Lm9:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds the carrier of (W1 /\ (W1 + W2)) = the carrier of W1
Lm10:
for R being Ring
for V being RightMod of R
for W1, W2, W3 being Submodule of V holds the carrier of ((W1 /\ W2) + (W2 /\ W3)) c= the carrier of (W2 /\ (W1 + W3))
Lm11:
for R being Ring
for V being RightMod of R
for W1, W2, W3 being Submodule of V st W1 is Submodule of W2 holds
the carrier of (W2 /\ (W1 + W3)) = the carrier of ((W1 /\ W2) + (W2 /\ W3))
Lm12:
for R being Ring
for V being RightMod of R
for W1, W2, W3 being Submodule of V holds the carrier of (W2 + (W1 /\ W3)) c= the carrier of ((W1 + W2) /\ (W2 + W3))
Lm13:
for R being Ring
for V being RightMod of R
for W1, W2, W3 being Submodule of V st W1 is Submodule of W2 holds
the carrier of (W2 + (W1 /\ W3)) = the carrier of ((W1 + W2) /\ (W2 + W3))
Lm14:
for R being Ring
for V being RightMod of R
for W1, W2 being Submodule of V holds
( W1 + W2 = RightModStr(# the carrier of V, the U7 of V, the ZeroF of V, the rmult of V #) iff for v being Vector of V ex v1, v2 being Vector of V st
( v1 in W1 & v2 in W2 & v = v1 + v2 ) )
Lm15:
for R being Ring
for V being RightMod of R
for v, v1, v2 being Vector of V holds
( v = v1 + v2 iff v1 = v - v2 )
definition
let R be
Ring;
let V be
RightMod of
R;
existence
ex b1 being BinOp of (Submodules V) st
for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b1 . (A1,A2) = W1 + W2
uniqueness
for b1, b2 being BinOp of (Submodules V) st ( for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b1 . (A1,A2) = W1 + W2 ) & ( for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b2 . (A1,A2) = W1 + W2 ) holds
b1 = b2
end;
definition
let R be
Ring;
let V be
RightMod of
R;
existence
ex b1 being BinOp of (Submodules V) st
for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b1 . (A1,A2) = W1 /\ W2
uniqueness
for b1, b2 being BinOp of (Submodules V) st ( for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b1 . (A1,A2) = W1 /\ W2 ) & ( for A1, A2 being Element of Submodules V
for W1, W2 being Submodule of V st A1 = W1 & A2 = W2 holds
b2 . (A1,A2) = W1 /\ W2 ) holds
b1 = b2
end;