Lm1:
for L being non trivial right_complementable well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr
for z being rational_function of L st z is irreducible holds
ex z1 being rational_function of L ex z2 being non zero Polynomial of L st
( z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) )
Lm2:
for L being non trivial right_complementable almost_left_invertible well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr
for z being rational_function of L st z is irreducible holds
for z1 being rational_function of L
for z2 being non zero Polynomial of L st z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) holds
for g1 being rational_function of L
for g2 being non zero Polynomial of L st z = [(g2 *' (g1 `1)),(g2 *' (g1 `2))] & g1 is irreducible & ex f being FinSequence of (Polynom-Ring L) st
( g2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) holds
( z2 = 1_. L & g2 = 1_. L & z1 = g1 )
Lm3:
for L being non trivial right_complementable almost_left_invertible well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr
for z being non zero rational_function of L
for z1 being rational_function of L
for z2 being non zero Polynomial of L st z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) holds
for g1 being rational_function of L
for g2 being non zero Polynomial of L st z = [(g2 *' (g1 `1)),(g2 *' (g1 `2))] & g1 is irreducible & ex g being FinSequence of (Polynom-Ring L) st
( g2 = Product g & ( for i being Element of NAT st i in dom g holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & g . i = rpoly (1,x) ) ) ) holds
z1 = g1
definition
let L be non
trivial right_complementable almost_left_invertible well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr ;
let z be
rational_function of
L;
existence
( ( not z is zero implies ex b1, z1 being rational_function of L ex z2 being non zero Polynomial of L st
( z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & b1 = NormRationalFunction z1 & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) ) ) & ( z is zero implies ex b1 being rational_function of L st b1 = 0._ L ) )
uniqueness
for b1, b2 being rational_function of L holds
( ( not z is zero & ex z1 being rational_function of L ex z2 being non zero Polynomial of L st
( z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & b1 = NormRationalFunction z1 & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) ) & ex z1 being rational_function of L ex z2 being non zero Polynomial of L st
( z = [(z2 *' (z1 `1)),(z2 *' (z1 `2))] & z1 is irreducible & b2 = NormRationalFunction z1 & ex f being FinSequence of (Polynom-Ring L) st
( z2 = Product f & ( for i being Element of NAT st i in dom f holds
ex x being Element of L st
( x is_a_common_root_of z `1 ,z `2 & f . i = rpoly (1,x) ) ) ) ) implies b1 = b2 ) & ( z is zero & b1 = 0._ L & b2 = 0._ L implies b1 = b2 ) )
by Lm3;
consistency
for b1 being rational_function of L holds verum
;
end;
Lm4:
for L being non trivial right_complementable almost_left_invertible well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr
for z being non zero irreducible rational_function of L holds NF z = NormRationalFunction z
Lm5:
for L being non trivial right_complementable distributive Abelian add-associative right_zeroed unital domRing-like left_zeroed doubleLoopStr
for p1, p2 being Polynomial of L holds
( not p1 *' p2 = 0_. L or p1 = 0_. L or p2 = 0_. L )
Lm6:
for L being non trivial right_complementable almost_left_invertible well-unital distributive Abelian add-associative right_zeroed associative commutative domRing-like doubleLoopStr
for z being non zero rational_function of L st z is irreducible holds
degree z = max ((degree (z `1)),(degree (z `2)))