Lm1:
for x being Element of NAT st 0 < x holds
0 + 1 <= x
by NAT_1:13;
theorem Th10:
for
n being
Nat holds 1
< n + 2
definition
let p be
polyhedron;
let k be
Integer;
let x be
Element of
(k - 1) -polytopes p;
let v be
Element of
(k -chain-space p);
existence
ex b1 being FinSequence of Z_2 st
( ( (k - 1) -polytopes p is empty implies b1 = <*> {} ) & ( not (k - 1) -polytopes p is empty implies ( len b1 = num-polytopes (p,k) & ( for n being Nat st 1 <= n & n <= num-polytopes (p,k) holds
b1 . n = (v @ (n -th-polytope (p,k))) * (incidence-value (x,(n -th-polytope (p,k)))) ) ) ) )
uniqueness
for b1, b2 being FinSequence of Z_2 st ( (k - 1) -polytopes p is empty implies b1 = <*> {} ) & ( not (k - 1) -polytopes p is empty implies ( len b1 = num-polytopes (p,k) & ( for n being Nat st 1 <= n & n <= num-polytopes (p,k) holds
b1 . n = (v @ (n -th-polytope (p,k))) * (incidence-value (x,(n -th-polytope (p,k)))) ) ) ) & ( (k - 1) -polytopes p is empty implies b2 = <*> {} ) & ( not (k - 1) -polytopes p is empty implies ( len b2 = num-polytopes (p,k) & ( for n being Nat st 1 <= n & n <= num-polytopes (p,k) holds
b2 . n = (v @ (n -th-polytope (p,k))) * (incidence-value (x,(n -th-polytope (p,k)))) ) ) ) holds
b1 = b2
end;