theorem Th1:
for
k,
n being
Nat st
k < n & 3
<= n & not
k + 1
< n holds
2
<= k
Lm1:
for X being finite set
for n being Nat st n <= card X holds
ex Y being Subset of X st card Y = n
by FINSEQ_4:72;
definition
let F be
Field;
let V be
finite-dimensional VectSp of
F;
let k be
Nat;
existence
ex b1 being Subset-Family of (k Subspaces_of V) st
for X being set holds
( X in b1 iff ex W1, W2 being Subspace of V st
( W1 is Subspace of W2 & (dim W1) + 1 = k & dim W2 = k + 1 & X = pencil (W1,W2,k) ) )
uniqueness
for b1, b2 being Subset-Family of (k Subspaces_of V) st ( for X being set holds
( X in b1 iff ex W1, W2 being Subspace of V st
( W1 is Subspace of W2 & (dim W1) + 1 = k & dim W2 = k + 1 & X = pencil (W1,W2,k) ) ) ) & ( for X being set holds
( X in b2 iff ex W1, W2 being Subspace of V st
( W1 is Subspace of W2 & (dim W1) + 1 = k & dim W2 = k + 1 & X = pencil (W1,W2,k) ) ) ) holds
b1 = b2
end;
definition
let X be
set ;
existence
ex b1 being set st
for z being set holds
( z in b1 iff ex x, y being set st
( x in X & y in X & z = {x,y} ) )
uniqueness
for b1, b2 being set st ( for z being set holds
( z in b1 iff ex x, y being set st
( x in X & y in X & z = {x,y} ) ) ) & ( for z being set holds
( z in b2 iff ex x, y being set st
( x in X & y in X & z = {x,y} ) ) ) holds
b1 = b2
end;