theorem Th01:
for
p,
q,
r being
Point of
(TOP-REAL 3) holds
(
|{p,q,r}| = |{r,p,q}| &
|{p,q,r}| = |{q,r,p}| )
theorem Th02:
for
K being
Field for
a,
b,
c,
d,
e,
f,
g,
h,
i,
a1,
b1,
c1,
d1,
e1,
f1,
g1,
h1,
i1 being
Element of
K st
<*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> = <*<*a1,b1,c1*>,<*d1,e1,f1*>,<*g1,h1,i1*>*> holds
(
a = a1 &
b = b1 &
c = c1 &
d = d1 &
e = e1 &
f = f1 &
g = g1 &
h = h1 &
i = i1 )
theorem Th03:
for
K being
Field for
M being
Matrix of 3,
K ex
a,
b,
c,
d,
e,
f,
g,
h,
i being
Element of
K st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*>
theorem Th04:
for
K being
Field for
a,
b,
c,
d,
e,
f,
g,
h,
i being
Element of
K for
M being
Matrix of 3,
K st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
(
a = M * (1,1) &
b = M * (1,2) &
c = M * (1,3) &
d = M * (2,1) &
e = M * (2,2) &
f = M * (2,3) &
g = M * (3,1) &
h = M * (3,2) &
i = M * (3,3) )
theorem Th05:
for
K being
Field for
a,
b,
c,
d,
e,
f,
g,
h,
i being
Element of
K for
M being
Matrix of 3,
K st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
M @ = <*<*a,d,g*>,<*b,e,h*>,<*c,f,i*>*>
theorem Th06:
for
K being
Field for
a,
b,
c,
d,
e,
f,
g,
h,
i being
Element of
K for
M being
Matrix of 3,
K st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> &
M is
symmetric holds
(
b = d &
c = g &
h = f )
theorem Th08:
for
M being
Matrix of 3,
F_Real for
a,
b,
c,
d,
e,
f,
g,
h,
i,
x,
y,
z being
Element of
F_Real for
v being
Element of
(TOP-REAL 3) for
uf being
FinSequence of
F_Real for
p being
FinSequence of 1
-tuples_on REAL st
p = M * uf &
v = M2F p &
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> &
uf = <*x,y,z*> holds
(
p = <*<*(((a * x) + (b * y)) + (c * z))*>,<*(((d * x) + (e * y)) + (f * z))*>,<*(((g * x) + (h * y)) + (i * z))*>*> &
v = <*(((a * x) + (b * y)) + (c * z)),(((d * x) + (e * y)) + (f * z)),(((g * x) + (h * y)) + (i * z))*> )
Lm01:
for p being FinSequence of REAL
for N1, M, N2 being Matrix of 3,REAL st len p = 3 holds
((N1 * M) * N2) * p = N1 * (M * (N2 * p))
Lm02:
for p being FinSequence of REAL
for N, M being Matrix of 3,REAL st len p = 3 holds
|((N * p),(M * (N * p)))| = |(p,((((N @) * M) * N) * p))|
Lm03:
for NR, M being Matrix of 3,REAL holds ((MXF2MXR ((MXR2MXF (NR @)) ~)) * M) * (MXF2MXR ((MXR2MXF NR) ~)) is Matrix of 3,REAL
Lm04:
for n being Nat
for A, B, C, D, E being Matrix of n,REAL holds (A * ((B * C) * D)) * E = ((A * B) * C) * (D * E)
Lm05:
for n being Nat
for A, B being Matrix of n,F_Real holds MXF2MXR (A * B) = (MXF2MXR A) * (MXF2MXR B)
Lm06:
for A being Matrix of REAL holds MXF2MXR (MXR2MXF A) = A
Lm07:
for n being Nat
for A, B being Matrix of n,REAL holds MXR2MXF (A * B) = (MXR2MXF A) * (MXR2MXF B)
Lm08:
for N being invertible Matrix of 3,F_Real
for NR being Matrix of 3,REAL st NR = MXF2MXR N holds
NR * (MXF2MXR ((MXR2MXF NR) ~)) = 1_Rmatrix 3
Lm09:
for N being invertible Matrix of 3,F_Real
for NR being Matrix of 3,REAL st NR = MXF2MXR N holds
(NR @) * (MXF2MXR ((MXR2MXF (NR @)) ~)) = 1_Rmatrix 3
Lm10:
for N being invertible Matrix of 3,F_Real
for NR being Matrix of 3,REAL st NR = MXF2MXR N holds
(MXF2MXR ((MXR2MXF NR) ~)) * NR = 1_Rmatrix 3
Lm11:
for N being invertible Matrix of 3,F_Real
for NR being Matrix of 3,REAL st NR = MXF2MXR N holds
(MXF2MXR ((MXR2MXF (NR @)) ~)) * (NR @) = 1_Rmatrix 3
Lm12:
for N being invertible Matrix of 3,F_Real
for NR being Matrix of 3,REAL st NR = MXF2MXR N holds
NR @ is invertible
Lm13:
for N being invertible Matrix of 3,F_Real
for NR, M, M2 being Matrix of 3,REAL st NR = MXF2MXR N & M2 = ((MXF2MXR ((MXR2MXF (NR @)) ~)) * M) * (MXF2MXR ((MXR2MXF NR) ~)) holds
((NR @) * M2) * NR = M
Lm14:
for n being Nat
for N being invertible Matrix of n,F_Real
for M being Matrix of n,REAL st M = MXF2MXR N holds
M is invertible
Lm15:
for n being Nat
for N being Matrix of n,F_Real
for M being Matrix of n,REAL st M is invertible & N = MXR2MXF M holds
N is invertible
theorem Th09:
for
p being
FinSequence of
REAL for
M being
Matrix of 3,
REAL for
a,
b,
c,
d,
e,
f,
g,
h,
i,
p1,
p2,
p3 being
Element of
REAL st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> &
p = <*p1,p2,p3*> holds
M * p = <*(((a * p1) + (b * p2)) + (c * p3)),(((d * p1) + (e * p2)) + (f * p3)),(((g * p1) + (h * p2)) + (i * p3))*>
Lm16:
for p being FinSequence of REAL
for M being Matrix of 3,REAL st p = 0. (TOP-REAL 3) holds
M * p = p
Lm17:
<*<*0,0,0*>,<*0,0,0*>,<*0,0,0*>*> = 0. (F_Real,3,3)
Lm18:
<*<*0,0,0*>,<*0,0,0*>,<*0,0,0*>*> = 0_Rmatrix 3
Lm19:
for n being Nat
for K being Field
for M being Matrix of n,K st n > 0 holds
M * (0. (K,n,n)) = 0. (K,n,n)
Lm20:
for M being Matrix of 3,REAL holds
( M * (0_Rmatrix 3) = 0_Rmatrix 3 & (0_Rmatrix 3) * M = 0_Rmatrix 3 )
::
deftheorem defines
qfconic PASCAL:def 1 :
for a, b, c, d, e, f being Real
for u being Element of (TOP-REAL 3) holds qfconic (a,b,c,d,e,f,u) = ((((((a * (u . 1)) * (u . 1)) + ((b * (u . 2)) * (u . 2))) + ((c * (u . 3)) * (u . 3))) + ((d * (u . 1)) * (u . 2))) + ((e * (u . 1)) * (u . 3))) + ((f * (u . 2)) * (u . 3));
definition
let a,
b,
c,
d,
e,
f be
Real;
func conic (
a,
b,
c,
d,
e,
f)
-> Subset of
(ProjectiveSpace (TOP-REAL 3)) equals
{ P where P is Point of (ProjectiveSpace (TOP-REAL 3)) : for u being Element of (TOP-REAL 3) st not u is zero & P = Dir u holds
qfconic (a,b,c,d,e,f,u) = 0 } ;
coherence
{ P where P is Point of (ProjectiveSpace (TOP-REAL 3)) : for u being Element of (TOP-REAL 3) st not u is zero & P = Dir u holds
qfconic (a,b,c,d,e,f,u) = 0 } is Subset of (ProjectiveSpace (TOP-REAL 3))
end;
::
deftheorem defines
conic PASCAL:def 2 :
for a, b, c, d, e, f being Real holds conic (a,b,c,d,e,f) = { P where P is Point of (ProjectiveSpace (TOP-REAL 3)) : for u being Element of (TOP-REAL 3) st not u is zero & P = Dir u holds
qfconic (a,b,c,d,e,f,u) = 0 } ;
theorem Th10:
for
a,
b,
c,
d,
e,
f being
Real for
u1,
u2 being non
zero Element of
(TOP-REAL 3) st
Dir u1 = Dir u2 &
qfconic (
a,
b,
c,
d,
e,
f,
u1)
= 0 holds
qfconic (
a,
b,
c,
d,
e,
f,
u2)
= 0
theorem Th11:
for
a,
b,
c,
d,
e,
f being
Real for
u being non
zero Element of
(TOP-REAL 3) for
P being
Element of
(ProjectiveSpace (TOP-REAL 3)) st
P = Dir u &
qfconic (
a,
b,
c,
d,
e,
f,
u)
= 0 holds
P in conic (
a,
b,
c,
d,
e,
f)
definition
let a,
b,
c,
d,
e,
f be
Real;
func symmetric_3 (
a,
b,
c,
d,
e,
f)
-> Matrix of 3,
F_Real equals
<*<*a,d,e*>,<*d,b,f*>,<*e,f,c*>*>;
coherence
<*<*a,d,e*>,<*d,b,f*>,<*e,f,c*>*> is Matrix of 3,F_Real
end;
::
deftheorem defines
symmetric_3 PASCAL:def 3 :
for a, b, c, d, e, f being Real holds symmetric_3 (a,b,c,d,e,f) = <*<*a,d,e*>,<*d,b,f*>,<*e,f,c*>*>;
theorem Th12:
for
a,
b,
c,
d,
e,
f being
Real holds
symmetric_3 (
a,
b,
c,
d,
e,
f) is
symmetric
theorem Th13:
for
p being
FinSequence of
REAL for
a,
b,
c,
d,
e,
f being
Real for
u being
Point of
(TOP-REAL 3) for
M being
Matrix of 3,
REAL st
p = u &
M = symmetric_3 (
a,
b,
c,
d,
e,
f) holds
SumAll (QuadraticForm (p,M,p)) = qfconic (
a,
b,
c,
(2 * d),
(2 * e),
(2 * f),
u)
theorem Th14:
for
N being
invertible Matrix of 3,
F_Real for
NR,
M1,
M2 being
Matrix of 3,
REAL for
a,
b,
c,
d,
e,
f being
Real st
NR = MXF2MXR N &
M1 = symmetric_3 (
a,
b,
c,
(d / 2),
(f / 2),
(e / 2)) &
M2 = ((MXF2MXR ((MXR2MXF (NR @)) ~)) * M1) * (MXF2MXR ((MXR2MXF NR) ~)) holds
MXR2MXF M2 is
symmetric
theorem Th15:
for
a1,
a2,
a3,
a4,
a5,
a6,
b1,
b2,
b3,
b4,
b5,
b6 being
Real st
symmetric_3 (
a1,
a2,
a3,
a4,
a5,
a6)
= symmetric_3 (
b1,
b2,
b3,
b4,
b5,
b6) holds
(
a1 = b1 &
a2 = b2 &
a3 = b3 &
a4 = b4 &
a5 = b5 &
a6 = b6 )
theorem Th16:
for
a,
b,
c,
d,
e,
f being
Real for
P being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
N being
invertible Matrix of 3,
F_Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
P in conic (
a,
b,
c,
d,
e,
f) holds
for
fa,
fb,
fc,
fd,
fe,
fi,
ff being
Real for
M1,
M2,
NR being
Matrix of 3,
REAL st
M1 = symmetric_3 (
a,
b,
c,
(d / 2),
(e / 2),
(f / 2)) &
NR = MXF2MXR N &
M2 = ((MXF2MXR ((MXR2MXF (NR @)) ~)) * M1) * (MXF2MXR ((MXR2MXF NR) ~)) &
M2 = symmetric_3 (
fa,
fe,
fi,
fb,
fc,
ff) holds
( ( not
fa = 0 or not
fe = 0 or not
fi = 0 or not
fb = 0 or not
ff = 0 or not
fc = 0 ) &
(homography N) . P in conic (
fa,
fe,
fi,
(2 * fb),
(2 * fc),
(2 * ff)) )
theorem Th17:
for
a,
b,
c,
d,
e,
f being
Real for
P1,
P2,
P3,
P4,
P5,
P6 being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
N being
invertible Matrix of 3,
F_Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
P1 in conic (
a,
b,
c,
d,
e,
f) &
P2 in conic (
a,
b,
c,
d,
e,
f) &
P3 in conic (
a,
b,
c,
d,
e,
f) &
P4 in conic (
a,
b,
c,
d,
e,
f) &
P5 in conic (
a,
b,
c,
d,
e,
f) &
P6 in conic (
a,
b,
c,
d,
e,
f) holds
ex
a2,
b2,
c2,
d2,
e2,
f2 being
Real st
( ( not
a2 = 0 or not
b2 = 0 or not
c2 = 0 or not
d2 = 0 or not
e2 = 0 or not
f2 = 0 ) &
(homography N) . P1 in conic (
a2,
b2,
c2,
d2,
e2,
f2) &
(homography N) . P2 in conic (
a2,
b2,
c2,
d2,
e2,
f2) &
(homography N) . P3 in conic (
a2,
b2,
c2,
d2,
e2,
f2) &
(homography N) . P4 in conic (
a2,
b2,
c2,
d2,
e2,
f2) &
(homography N) . P5 in conic (
a2,
b2,
c2,
d2,
e2,
f2) &
(homography N) . P6 in conic (
a2,
b2,
c2,
d2,
e2,
f2) )
theorem Th18:
for
a,
b,
c,
d,
e,
f being
Element of
F_Real holds
( (
qfconic (
a,
b,
c,
d,
e,
f,
|[1,0,0]|)
= 0 implies
a = 0 ) & (
qfconic (
a,
b,
c,
d,
e,
f,
|[0,1,0]|)
= 0 implies
b = 0 ) & (
qfconic (
a,
b,
c,
d,
e,
f,
|[0,0,1]|)
= 0 implies
c = 0 ) & (
qfconic (
0,
0,
0,
d,
e,
f,
|[1,1,1]|)
= 0 implies
(d + e) + f = 0 ) )
Lm21:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 1 & b = 0 & c = 0 & d = 0 & e = 1 & f = 0 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = i
Lm22:
for r1, r2, d, e, f, g, h, i being Real st ( r1 <> 0 or r2 <> 0 ) & ((r1 * d) * e) + ((r2 * d) * f) = ((r1 + r2) * e) * f & ((r1 * g) * h) + ((r2 * g) * i) = ((r1 + r2) * h) * i holds
((f * h) * (g - i)) * (d - e) = ((i * e) * (d - f)) * (g - h)
Lm23:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 1 & b = 0 & c = 0 & d = 0 & e = 0 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = - h
Lm24:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 0 & b = 1 & c = 0 & d = 1 & e = 1 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = g - i
Lm25:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 0 & b = 0 & c = 1 & d = 1 & e = 1 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = h - g
Lm26:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 1 & b = 0 & c = 0 & d = 0 & e = 1 & f = 0 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = i
Lm27:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 1 & b = 0 & c = 0 & d = 0 & e = 0 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = - h
Lm28:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 0 & b = 1 & c = 0 & d = 1 & e = 1 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = g - i
Lm29:
for a, b, c, d, e, f, g, h, i being Element of F_Real
for M being Matrix of 3,F_Real st a = 0 & b = 0 & c = 1 & d = 1 & e = 1 & f = 1 & M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = h - g
Lm30:
for e1, e2, e3, f1, f2, f3 being Element of F_Real
for MABE, MACF, MBDF, MCDE being Matrix of 3,F_Real st MABE = <*<*1,0,0*>,<*0,1,0*>,<*e1,e2,e3*>*> & MACF = <*<*1,0,0*>,<*0,0,1*>,<*f1,f2,f3*>*> & MBDF = <*<*0,1,0*>,<*1,1,1*>,<*f1,f2,f3*>*> & MCDE = <*<*0,0,1*>,<*1,1,1*>,<*e1,e2,e3*>*> holds
(((Det MABE) * (Det MACF)) * (Det MBDF)) * (Det MCDE) = ((e3 * f2) * (f1 - f3)) * (e1 - e2)
Lm31:
for e1, e2, e3, f1, f2, f3 being Element of F_Real
for MABF, MACE, MBDE, MCDF being Matrix of 3,F_Real st MABF = <*<*1,0,0*>,<*0,1,0*>,<*f1,f2,f3*>*> & MACE = <*<*1,0,0*>,<*0,0,1*>,<*e1,e2,e3*>*> & MBDE = <*<*0,1,0*>,<*1,1,1*>,<*e1,e2,e3*>*> & MCDF = <*<*0,0,1*>,<*1,1,1*>,<*f1,f2,f3*>*> holds
(((Det MABF) * (Det MACE)) * (Det MBDE)) * (Det MCDF) = ((f3 * e2) * (e1 - e3)) * (f1 - f2)
theorem Th19:
for
e1,
e2,
e3,
f1,
f2,
f3 being
Element of
F_Real for
MABF,
MABE,
MACF,
MBDF,
MCDE,
MACE,
MBDE,
MCDF being
Matrix of 3,
F_Real for
r1,
r2 being
Real st
MABE = <*<*1,0,0*>,<*0,1,0*>,<*e1,e2,e3*>*> &
MACF = <*<*1,0,0*>,<*0,0,1*>,<*f1,f2,f3*>*> &
MBDF = <*<*0,1,0*>,<*1,1,1*>,<*f1,f2,f3*>*> &
MCDE = <*<*0,0,1*>,<*1,1,1*>,<*e1,e2,e3*>*> &
MABF = <*<*1,0,0*>,<*0,1,0*>,<*f1,f2,f3*>*> &
MACE = <*<*1,0,0*>,<*0,0,1*>,<*e1,e2,e3*>*> &
MBDE = <*<*0,1,0*>,<*1,1,1*>,<*e1,e2,e3*>*> &
MCDF = <*<*0,0,1*>,<*1,1,1*>,<*f1,f2,f3*>*> & (
r1 <> 0 or
r2 <> 0 ) &
((r1 * e1) * e2) + ((r2 * e1) * e3) = ((r1 + r2) * e2) * e3 &
((r1 * f1) * f2) + ((r2 * f1) * f3) = ((r1 + r2) * f2) * f3 holds
(((Det MABE) * (Det MACF)) * (Det MBDF)) * (Det MCDE) = (((Det MABF) * (Det MACE)) * (Det MBDE)) * (Det MCDF)
theorem Th20:
for
MABF,
MABE,
MACF,
MBDF,
MCDE,
MACE,
MBDE,
MCDF being
Matrix of 3,
F_Real for
p1,
p2,
p3,
p4,
p5,
p6 being
Point of
(TOP-REAL 3) st
MABE = <*p1,p2,p5*> &
MACF = <*p1,p3,p6*> &
MBDF = <*p2,p4,p6*> &
MCDE = <*p3,p4,p5*> &
MABF = <*p1,p2,p6*> &
MACE = <*p1,p3,p5*> &
MBDE = <*p2,p4,p5*> &
MCDF = <*p3,p4,p6*> holds
(
Det MABE = |{p1,p2,p5}| &
Det MACF = |{p1,p3,p6}| &
Det MBDF = |{p2,p4,p6}| &
Det MCDE = |{p3,p4,p5}| &
Det MABF = |{p1,p2,p6}| &
Det MACE = |{p1,p3,p5}| &
Det MBDE = |{p2,p4,p5}| &
Det MCDF = |{p3,p4,p6}| )
theorem Th21:
for
p1,
p2,
p5,
p7,
p9 being
Point of
(TOP-REAL 3) st
|{p1,p5,p9}| = 0 holds
|{p1,p5,p7}| * |{p2,p5,p9}| = - (|{p1,p2,p5}| * |{p5,p9,p7}|)
theorem Th22:
for
p1,
p2,
p3,
p6,
p8 being
Point of
(TOP-REAL 3) st
|{p1,p6,p8}| = 0 holds
|{p1,p2,p6}| * |{p3,p6,p8}| = |{p1,p3,p6}| * |{p2,p6,p8}|
theorem Th23:
for
p2,
p4,
p5,
p7,
p9 being
Point of
(TOP-REAL 3) st
|{p2,p4,p9}| = 0 holds
|{p2,p4,p5}| * |{p2,p9,p7}| = - (|{p2,p4,p7}| * |{p2,p5,p9}|)
theorem Th24:
for
p2,
p4,
p6,
p7,
p8 being
Point of
(TOP-REAL 3) st
|{p2,p6,p7}| = 0 holds
|{p2,p4,p7}| * |{p2,p6,p8}| = - (|{p2,p4,p6}| * |{p2,p8,p7}|)
theorem Th25:
for
p3,
p4,
p5,
p6,
p8 being
Point of
(TOP-REAL 3) st
|{p3,p4,p8}| = 0 holds
|{p3,p4,p6}| * |{p3,p5,p8}| = |{p3,p4,p5}| * |{p3,p6,p8}|
theorem Th26:
for
p1,
p3,
p5,
p7,
p8 being
Point of
(TOP-REAL 3) st
|{p3,p5,p7}| = 0 holds
|{p1,p3,p5}| * |{p5,p8,p7}| = - (|{p1,p5,p7}| * |{p3,p5,p8}|)
theorem Th27:
for
r125,
r136,
r246,
r345,
r126,
r135,
r245,
r346,
r157,
r259,
r597,
r368,
r268,
r297,
r247,
r287,
r358,
r587 being non
zero Real st
((r125 * r136) * r246) * r345 = ((r126 * r135) * r245) * r346 &
r157 * r259 = - (r125 * r597) &
r126 * r368 = r136 * r268 &
r245 * r297 = - (r247 * r259) &
r247 * r268 = - (r246 * r287) &
r346 * r358 = r345 * r368 &
r135 * r587 = - (r157 * r358) holds
r287 * r597 = r297 * r587
theorem Th28:
for
e1,
e2,
e3,
f1,
f2,
f3 being
Element of
F_Real for
r1,
r2 being
Real for
p1,
p2,
p3,
p4,
p5,
p6 being
Point of
(TOP-REAL 3) st
p1 = <*1,0,0*> &
p2 = <*0,1,0*> &
p3 = <*0,0,1*> &
p4 = <*1,1,1*> &
p5 = <*e1,e2,e3*> &
p6 = <*f1,f2,f3*> &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p5)
= 0 &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p6)
= 0 holds
(
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p1)
= 0 &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p2)
= 0 &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p3)
= 0 &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p4)
= 0 &
((r1 * e1) * e2) + ((r2 * e1) * e3) = ((r1 + r2) * e2) * e3 &
((r1 * f1) * f2) + ((r2 * f1) * f3) = ((r1 + r2) * f2) * f3 )
theorem Th29:
for
e1,
e2,
e3,
f1,
f2,
f3 being
Element of
F_Real for
r1,
r2 being
Real for
p1,
p2,
p3,
p4,
p5,
p6,
p7,
p8,
p9 being
Point of
(TOP-REAL 3) st
p1 = <*1,0,0*> &
p2 = <*0,1,0*> &
p3 = <*0,0,1*> &
p4 = <*1,1,1*> &
p5 = <*e1,e2,e3*> &
p6 = <*f1,f2,f3*> &
|{p1,p2,p5}| <> 0 &
|{p1,p3,p6}| <> 0 &
|{p2,p4,p6}| <> 0 &
|{p3,p4,p5}| <> 0 &
|{p1,p2,p6}| <> 0 &
|{p1,p3,p5}| <> 0 &
|{p2,p4,p5}| <> 0 &
|{p3,p4,p6}| <> 0 &
|{p1,p5,p7}| <> 0 &
|{p2,p5,p9}| <> 0 &
|{p5,p9,p7}| <> 0 &
|{p3,p6,p8}| <> 0 &
|{p2,p6,p8}| <> 0 &
|{p2,p9,p7}| <> 0 &
|{p2,p4,p7}| <> 0 &
|{p2,p8,p7}| <> 0 &
|{p3,p5,p8}| <> 0 &
|{p5,p8,p7}| <> 0 & (
r1 <> 0 or
r2 <> 0 ) &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p5)
= 0 &
qfconic (
0,
0,
0,
r1,
r2,
(- (r1 + r2)),
p6)
= 0 &
|{p1,p5,p9}| = 0 &
|{p1,p6,p8}| = 0 &
|{p2,p4,p9}| = 0 &
|{p2,p6,p7}| = 0 &
|{p3,p4,p8}| = 0 &
|{p3,p5,p7}| = 0 holds
|{p2,p8,p7}| * |{p5,p9,p7}| = |{p2,p9,p7}| * |{p5,p8,p7}|
theorem Th30:
for
p2,
p5,
p7,
p8,
p9 being
Point of
(TOP-REAL 3) st
|{p2,p8,p7}| * |{p5,p9,p7}| = |{p2,p9,p7}| * |{p5,p8,p7}| holds
|{p7,p2,p5}| * |{p7,p8,p9}| = 0
theorem Th31:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c9 being
Element of
PCPP st not
c1,
c2,
c4 are_collinear & not
c1,
c2,
c5 are_collinear & not
c1,
c6,
c4 are_collinear & not
c1,
c6,
c5 are_collinear & not
c2,
c6,
c4 are_collinear & not
c3,
c4,
c2 are_collinear & not
c3,
c4,
c6 are_collinear & not
c3,
c5,
c2 are_collinear & not
c3,
c5,
c6 are_collinear & not
c4,
c5,
c2 are_collinear &
c1,
c4,
c7 are_collinear &
c1,
c5,
c8 are_collinear &
c2,
c3,
c7 are_collinear &
c2,
c5,
c9 are_collinear &
c6,
c3,
c8 are_collinear &
c6,
c4,
c9 are_collinear holds
( not
c9,
c2,
c4 are_collinear & not
c1,
c4,
c9 are_collinear & not
c2,
c3,
c9 are_collinear & not
c2,
c4,
c7 are_collinear & not
c2,
c5,
c8 are_collinear & not
c2,
c9,
c8 are_collinear & not
c2,
c9,
c7 are_collinear & not
c6,
c4,
c8 are_collinear & not
c6,
c5,
c8 are_collinear & not
c4,
c9,
c8 are_collinear & not
c4,
c9,
c7 are_collinear )
definition
let P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 be
Point of
(ProjectiveSpace (TOP-REAL 3));
pred P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 are_in_Pascal_configuration means
( not
P1,
P2,
P4 are_collinear & not
P1,
P3,
P4 are_collinear & not
P2,
P3,
P4 are_collinear & not
P1,
P2,
P5 are_collinear & not
P1,
P2,
P6 are_collinear & not
P1,
P3,
P5 are_collinear & not
P1,
P3,
P6 are_collinear & not
P2,
P4,
P5 are_collinear & not
P2,
P4,
P6 are_collinear & not
P3,
P4,
P5 are_collinear & not
P3,
P4,
P6 are_collinear & not
P2,
P3,
P5 are_collinear & not
P2,
P3,
P6 are_collinear & not
P4,
P5,
P1 are_collinear & not
P4,
P6,
P1 are_collinear & not
P5,
P6,
P1 are_collinear & not
P5,
P6,
P2 are_collinear &
P1,
P5,
P9 are_collinear &
P1,
P6,
P8 are_collinear &
P2,
P4,
P9 are_collinear &
P2,
P6,
P7 are_collinear &
P3,
P4,
P8 are_collinear &
P3,
P5,
P7 are_collinear );
end;
::
deftheorem defines
are_in_Pascal_configuration PASCAL:def 4 :
for P1, P2, P3, P4, P5, P6, P7, P8, P9 being Point of (ProjectiveSpace (TOP-REAL 3)) holds
( P1,P2,P3,P4,P5,P6,P7,P8,P9 are_in_Pascal_configuration iff ( not P1,P2,P4 are_collinear & not P1,P3,P4 are_collinear & not P2,P3,P4 are_collinear & not P1,P2,P5 are_collinear & not P1,P2,P6 are_collinear & not P1,P3,P5 are_collinear & not P1,P3,P6 are_collinear & not P2,P4,P5 are_collinear & not P2,P4,P6 are_collinear & not P3,P4,P5 are_collinear & not P3,P4,P6 are_collinear & not P2,P3,P5 are_collinear & not P2,P3,P6 are_collinear & not P4,P5,P1 are_collinear & not P4,P6,P1 are_collinear & not P5,P6,P1 are_collinear & not P5,P6,P2 are_collinear & P1,P5,P9 are_collinear & P1,P6,P8 are_collinear & P2,P4,P9 are_collinear & P2,P6,P7 are_collinear & P3,P4,P8 are_collinear & P3,P5,P7 are_collinear ) );
theorem Th32:
for
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 being
Point of
(ProjectiveSpace (TOP-REAL 3)) st
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 are_in_Pascal_configuration holds
( not
P7,
P2,
P5 are_collinear & not
P1,
P5,
P7 are_collinear & not
P2,
P4,
P7 are_collinear & not
P2,
P5,
P9 are_collinear & not
P2,
P6,
P8 are_collinear & not
P2,
P7,
P8 are_collinear & not
P2,
P7,
P9 are_collinear & not
P3,
P5,
P8 are_collinear & not
P3,
P6,
P8 are_collinear & not
P5,
P7,
P8 are_collinear & not
P5,
P7,
P9 are_collinear )
theorem Th33:
for
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
a,
b,
c,
d,
e,
f being
Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
{P1,P2,P3,P4,P5,P6} c= conic (
a,
b,
c,
d,
e,
f) & not
P1,
P2,
P3 are_collinear & not
P1,
P2,
P4 are_collinear & not
P1,
P3,
P4 are_collinear & not
P2,
P3,
P4 are_collinear & not
P7,
P2,
P5 are_collinear & not
P1,
P2,
P5 are_collinear & not
P1,
P2,
P6 are_collinear & not
P1,
P3,
P5 are_collinear & not
P1,
P3,
P6 are_collinear & not
P1,
P5,
P7 are_collinear & not
P2,
P4,
P5 are_collinear & not
P2,
P4,
P6 are_collinear & not
P2,
P4,
P7 are_collinear & not
P2,
P5,
P9 are_collinear & not
P2,
P6,
P8 are_collinear & not
P2,
P7,
P8 are_collinear & not
P2,
P7,
P9 are_collinear & not
P3,
P4,
P5 are_collinear & not
P3,
P4,
P6 are_collinear & not
P3,
P5,
P8 are_collinear & not
P3,
P6,
P8 are_collinear & not
P5,
P7,
P8 are_collinear & not
P5,
P7,
P9 are_collinear &
P1,
P5,
P9 are_collinear &
P1,
P6,
P8 are_collinear &
P2,
P4,
P9 are_collinear &
P2,
P6,
P7 are_collinear &
P3,
P4,
P8 are_collinear &
P3,
P5,
P7 are_collinear holds
P7,
P8,
P9 are_collinear
theorem Th34:
for
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
a,
b,
c,
d,
e,
f being
Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
{P1,P2,P3,P4,P5,P6} c= conic (
a,
b,
c,
d,
e,
f) & not
P1,
P2,
P3 are_collinear &
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 are_in_Pascal_configuration holds
P7,
P8,
P9 are_collinear
theorem Th35:
for
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
a,
b,
c,
d,
e,
f being
Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
{P1,P2,P3,P4,P5,P6} c= conic (
a,
b,
c,
d,
e,
f) &
P1,
P2,
P3 are_collinear &
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 are_in_Pascal_configuration holds
P7,
P8,
P9 are_collinear
theorem
for
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 being
Point of
(ProjectiveSpace (TOP-REAL 3)) for
a,
b,
c,
d,
e,
f being
Real st ( not
a = 0 or not
b = 0 or not
c = 0 or not
d = 0 or not
e = 0 or not
f = 0 ) &
{P1,P2,P3,P4,P5,P6} c= conic (
a,
b,
c,
d,
e,
f) &
P1,
P2,
P3,
P4,
P5,
P6,
P7,
P8,
P9 are_in_Pascal_configuration holds
P7,
P8,
P9 are_collinear
:: set(ignore_option_dependencies). % GUI handles dependencies
:: if(Prover9). % Options for Prover9
:: assign(max_seconds, 60).
:: end_if.
:: if(Mace4). % Options for Mace4
:: assign(max_seconds, 60).
:: end_if.
:: formulas(assumptions).
:: ((x = y) | (x = z) | (y = z)) -> f(x,y,z) #label(COLLSP2).
:: ((x != y) & f(x,y,z) & f(x,y,u) & f(x,y,v)) -> f(z,u,v) #label(COLLSP3).
:: f(x,y,x) #label(COLLSP5).
:: f(x,y,z) -> (f(y,z,x) & f(z,x,y) & f(y,x,z) & f(x,z,y) & f(z,x,y)) #label(HESSENBE1).
:: end_of_list.
:: formulas(goals).
:: -f(x1,x2,x4) & -f(x1,x2,x5) &
:: -f(x1,x6,x4) & -f(x1,x6,x5) &
:: -f(x2,x6,x4) & -f(x3,x4,x2) &
:: -f(x3,x4,x6) & -f(x3,x5,x2) &
:: -f(x3,x5,x6) & -f(x4,x5,x2) &
:: f(x1,x4,x7) & f(x1,x5,x8) &
:: f(x2,x3,x7) & f(x2,x5,x9) &
:: f(x6,x3,x8) & f(x6,x4,x9)
:: -> (-f(x9,x2,x4) & -f(x1,x4,x9) &
:: -f(x2,x3,x9) & -f(x2,x4,x7) &
:: -f(x2,x5,x8) & -f(x2,x9,x8) &
:: -f(x2,x9,x7) & -f(x6,x4,x8) &
:: -f(x6,x5,x8) & -f(x4,x9,x8) &
:: -f(x4,x9,x7)).
:: end_of_list.
:: ============================== prooftrans ============================
:: Prover9 (32) version Dec-2007, Dec 2007.
:: Process 10620 was started by RC on ,
:: Wed
:: The command was "/cygdrive/c/Program Files (x86)/Prover9-Mace4/bin-win32/prover9".
:: ============================== end of head ===========================
:: ============================== end of input ==========================
:: ============================== PROOF =================================
:: % -------- Comments from original proof --------
:: % Proof 1 at 0.36 (+ 0.09) seconds.
:: % Length of proof is 104.
:: % Level of proof is 29.
:: % Maximum clause weight is 44.
:: % Given clauses 786.
:: 1 x = y | x = z | y = z -> f(x,y,z) # label(COLLSP2) # label(non_clause). [assumption].
:: 2 x != y & f(x,y,z) & f(x,y,u) & f(x,y,w) -> f(z,u,w) # label(COLLSP3) # label(non_clause). [assumption].
:: 3 f(x,y,z) -> f(y,z,x) & f(z,x,y) & f(y,x,z) & f(x,z,y) & f(z,x,y) # label(HESSENBE1) # label(non_clause). [assumption].
:: 4 -f(x,y,z) & -f(x,y,u) & -f(x,w,z) & -f(x,w,u) & -f(y,w,z) & -f(v5,z,y) & -f(v5,z,w) & -f(v5,u,y) & -f(v5,u,w) & -f(z,u,y) & f(x,z,v6) & f(x,u,v7) & f(y,v5,v6) & f(y,u,v8) & f(w,v5,v7) & f(w,z,v8) -> -f(v8,y,z) & -f(x,z,v8) & -f(y,v5,v8) & -f(y,z,v6) & -f(y,u,v7) & -f(y,v8,v7) & -f(y,v8,v6) & -f(w,z,v7) & -f(w,u,v7) & -f(z,v8,v7) & -f(z,v8,v6) # label(non_clause) # label(goal). [goal].
:: 6 x != y | f(y,z,x) # label(COLLSP2). [clausify(1)].
:: 7 x != y | f(z,y,x) # label(COLLSP2). [clausify(1)].
:: 8 x = y | -f(y,x,z) | -f(y,x,u) | -f(y,x,w) | f(z,u,w) # label(COLLSP3). [clausify(2)].
:: 9 f(x,y,x) # label(COLLSP5). [assumption].
:: 10 -f(x,y,z) | f(y,z,x) # label(HESSENBE1). [clausify(3)].
:: 11 -f(x,y,z) | f(z,x,y) # label(HESSENBE1). [clausify(3)].
:: 12 -f(x,y,z) | f(y,x,z) # label(HESSENBE1). [clausify(3)].
:: 13 -f(x,y,z) | f(x,z,y) # label(HESSENBE1). [clausify(3)].
:: 14 -f(c1,c2,c3). [deny(4)].
:: 15 -f(c1,c2,c4). [deny(4)].
:: 16 -f(c1,c5,c3). [deny(4)].
:: 17 -f(c1,c5,c4). [deny(4)].
:: 18 -f(c2,c5,c3). [deny(4)].
:: 19 -f(c6,c3,c2). [deny(4)].
:: 20 -f(c6,c3,c5). [deny(4)].
:: 21 -f(c6,c4,c2). [deny(4)].
:: 22 -f(c6,c4,c5). [deny(4)].
:: 23 -f(c3,c4,c2). [deny(4)].
:: 24 f(c1,c3,c7). [deny(4)].
:: 25 f(c1,c4,c8). [deny(4)].
:: 26 f(c2,c6,c7). [deny(4)].
:: 27 f(c2,c4,c9). [deny(4)].
:: 28 f(c5,c6,c8). [deny(4)].
:: 29 f(c5,c3,c9). [deny(4)].
:: 30 f(c9,c2,c3) | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c5,c3,c8) | f(c5,c4,c8) | f(c3,c9,c8) | f(c3,c9,c7). [deny(4)].
:: 34 f(x,y,y). [xx_res(7,a)].
:: 35 x = y | -f(y,x,z) | -f(y,x,u) | f(z,u,y). [resolve(9,a,8,d)].
:: 36 x = y | -f(y,x,z) | -f(y,x,u) | f(z,y,u). [resolve(9,a,8,c)].
:: 37 x = y | -f(y,x,z) | -f(y,x,u) | f(y,z,u). [resolve(9,a,8,b)].
:: 40 -f(c2,c3,c1). [ur(11,b,14,a)].
:: 42 c3 != c2. [ur(7,b,14,a)].
:: 43 c3 != c1. [ur(6,b,14,a)].
:: 49 c4 != c2. [ur(7,b,15,a)].
:: 54 -f(c3,c1,c5). [ur(10,b,16,a)].
:: 55 c5 != c3. [ur(7,b,16,a),flip(a)].
:: 57 -f(c1,c4,c5). [ur(13,b,17,a)].
:: 61 c5 != c4. [ur(7,b,17,a),flip(a)].
:: 63 -f(c5,c2,c3). [ur(12,b,18,a)].
:: 64 -f(c5,c3,c2). [ur(11,b,18,a)].
:: 70 -f(c2,c6,c3). [ur(10,b,19,a)].
:: 79 -f(c4,c6,c2). [ur(12,b,21,a)].
:: 86 -f(c5,c6,c4). [ur(10,b,22,a)].
:: 92 f(c1,c7,c3). [resolve(24,a,13,a)].
:: 99 f(c1,c8,c4). [resolve(25,a,13,a)].
:: 108 f(c7,c2,c6). [resolve(26,a,11,a)].
:: 113 f(c2,c9,c4). [resolve(27,a,13,a)].
:: 120 f(c5,c8,c6). [resolve(28,a,13,a)].
:: 127 f(c5,c9,c3). [resolve(29,a,13,a)].
:: 130 f(c3,c9,c5). [resolve(29,a,10,a)].
:: 132 -f(c5,c3,x) | -f(c5,c3,y) | f(x,c9,y). [resolve(29,a,8,c),flip(a),unit_del(a,55)].
:: 134 f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c5,c3,c8) | f(c5,c4,c8) | f(c3,c9,c8) | f(c3,c9,c7) | f(c9,c3,c2). [resolve(30,a,13,a)].
:: 142 x = y | -f(y,x,z) | -f(y,x,u) | f(z,u,x). [resolve(34,a,8,d)].
:: 144 x = y | -f(y,x,z) | -f(y,x,u) | f(x,z,u). [resolve(34,a,8,b)].
:: 145 -f(c2,c4,c3). [ur(8,a,49,a,c,34,a,d,9,a,e,23,a)].
:: 146 -f(c2,c4,c6). [ur(8,a,49,a,c,34,a,d,9,a,e,21,a)].
:: 148 -f(c4,c2,c1). [ur(8,a,49,a(flip),c,34,a,d,9,a,e,15,a)].
:: 149 -f(c3,c2,c1). [ur(8,a,42,a(flip),c,34,a,d,9,a,e,14,a)].
:: 150 f(c7,c3,c1). [resolve(92,a,10,a)].
:: 173 x = y | -f(y,x,z) | f(z,x,y). [resolve(35,c,34,a)].
:: 182 -f(c3,c5,c1). [ur(35,a,55,a,c,34,a,d,16,a)].
:: 184 -f(c4,c5,c1). [ur(35,a,61,a,c,34,a,d,17,a)].
:: 193 f(c8,c4,c1). [resolve(99,a,10,a)].
:: 310 c9 = c2 | -f(c2,c9,x) | f(c2,c4,x). [resolve(113,a,37,b)].
:: 311 c9 = c2 | -f(c2,c9,x) | f(x,c2,c4). [resolve(113,a,36,c)].
:: 314 c9 = c2 | -f(c2,c9,x) | f(c4,x,c2). [resolve(113,a,35,b)].
:: 351 c8 = c5 | -f(c5,c8,x) | f(c6,x,c5). [resolve(120,a,35,b)].
:: 389 f(c9,c3,c5). [resolve(127,a,10,a)].
:: 413 c9 = c3 | -f(c3,c9,x) | f(x,c3,c5). [resolve(130,a,36,c)].
:: 416 c9 = c3 | -f(c3,c9,x) | f(c5,x,c3). [resolve(130,a,35,b)].
:: 506 -f(c5,c3,x) | f(c3,c9,x). [resolve(132,a,34,a)].
:: 581 c9 = c3 | -f(c9,c3,x) | f(c5,x,c3). [resolve(142,b,389,a),flip(a)].
:: 751 c9 = c3 | -f(c9,c3,x) | f(c3,x,c5). [resolve(144,c,389,a),flip(a)].
:: 755 c8 = c4 | -f(c8,c4,x) | f(c4,x,c1). [resolve(144,c,193,a),flip(a)].
:: 756 c7 = c3 | -f(c7,c3,x) | f(c3,x,c1). [resolve(144,c,150,a),flip(a)].
:: 774 c7 = c2 | -f(c7,c2,x) | f(c2,x,c6). [resolve(144,c,108,a),flip(a)].
:: 797 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c5,c3,c8) | f(c5,c4,c8) | f(c3,c9,c8) | f(c3,c9,c7). [resolve(581,b,134,k),unit_del(b,63)].
:: 799 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c5,c3,c8) | f(c3,c9,c8) | f(c3,c9,c7) | f(c8,c4,c5). [resolve(797,i,173,b),flip(k),unit_del(k,61)].
:: 843 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c5,c3,c8) | f(c3,c9,c8) | f(c3,c9,c7) | c8 = c4. [resolve(799,k,755,b),unit_del(l,184)].
:: 847 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c3,c9,c8) | f(c3,c9,c7) | c8 = c4. [resolve(843,h,506,a),merge(k)].
:: 882 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c3,c9,c7) | c8 = c4 | f(c5,c8,c3). [resolve(847,h,416,b),merge(j)].
:: 1055 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | f(c3,c9,c7) | c8 = c4 | c8 = c5. [resolve(882,j,351,b),unit_del(k,20)].
:: 1071 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | c8 = c4 | c8 = c5 | f(c7,c3,c5). [resolve(1055,h,413,b),merge(j)].
:: 1256 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c8) | f(c2,c9,c7) | c8 = c4 | c8 = c5 | c7 = c3. [resolve(1071,j,756,b),unit_del(k,182)].
:: 1273 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | f(c2,c9,c7) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2. [resolve(1256,f,310,b),merge(k)].
:: 1293 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | f(c7,c2,c4). [resolve(1273,f,311,b),merge(j)].
:: 1497 c9 = c3 | f(c1,c3,c9) | f(c2,c6,c9) | f(c2,c3,c7) | f(c2,c4,c8) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [resolve(1293,j,774,b),unit_del(k,146)].
:: 1529 c9 = c3 | f(c1,c3,c9) | f(c2,c3,c7) | f(c2,c4,c8) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2 | f(c2,c9,c6). [resolve(1497,c,13,a)].
:: 1809 c9 = c3 | f(c1,c3,c9) | f(c2,c3,c7) | f(c2,c4,c8) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [resolve(1529,j,314,b),merge(j),unit_del(j,79)].
:: 1821 c9 = c3 | f(c1,c3,c9) | f(c2,c3,c7) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2 | f(c8,c4,c2). [resolve(1809,d,173,b),unit_del(i,49)].
:: 2066 c9 = c3 | f(c1,c3,c9) | f(c2,c3,c7) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [resolve(1821,i,755,b),merge(i),unit_del(i,148)].
:: 2067 c9 = c3 | f(c1,c3,c9) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2 | f(c7,c3,c2). [resolve(2066,c,173,b),unit_del(h,42)].
:: 2087 c9 = c3 | f(c1,c3,c9) | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [resolve(2067,h,756,b),merge(h),unit_del(h,149)].
:: 2099 c9 = c3 | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2 | f(c9,c3,c1). [resolve(2087,b,173,b),unit_del(g,43)].
:: 2339 c9 = c3 | c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [resolve(2099,g,751,b),merge(g),unit_del(g,54)].
:: 2346 c8 = c4 | c8 = c5 | c7 = c3 | c9 = c2 | c7 = c2. [para(2339(a,1),27(a,3)),unit_del(f,145)].
:: 2353 c8 = c4 | c8 = c5 | c7 = c3 | c7 = c2. [para(2346(d,1),29(a,3)),unit_del(e,64)].
:: 2360 c8 = c4 | c7 = c3 | c7 = c2. [para(2353(b,1),25(a,3)),unit_del(d,57)].
:: 2367 c7 = c3 | c7 = c2. [para(2360(a,1),28(a,3)),unit_del(c,86)].
:: 2374 c7 = c2. [para(2367(a,1),26(a,3)),unit_del(b,70)].
:: 2470 $F. [back_rewrite(150),rewrite([2374(1)]),unit_del(a,40)].
:: ============================== end of proof ==========================
:: OTT2MIZ (J. URBAN)