Lm1:
for x, a being Real ex r being Real st
( 0 < r & x in ].(a - r),(a + r).[ )
Lm2:
for x, a, b being Real st a <= b holds
].(x - a),(x + a).[ c= ].(x - b),(x + b).[
theorem Th3:
for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
E being
set st
f = g &
E c= dom f holds
(
f is_uniformly_continuous_on E iff for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2,
z1,
z2 being
Real st
[x1,y1,z1] in E &
[x2,y2,z2] in E &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r &
|.(z2 - z1).| < r holds
|.((g . [x2,y2,z2]) - (g . [x1,y1,z1])).| < e ) ) )
theorem Th4:
for
I,
J,
K being
Interval holds
(
[:[:I,J:],K:] is
Subset of
[:[:RNS_Real,RNS_Real:],RNS_Real:] &
[:[:I,J:],K:] in sigma (measurable_rectangles ((sigma (measurable_rectangles (L-Field,L-Field))),L-Field)) )
theorem Th5:
for
u being
Point of
[:RNS_Real,RNS_Real,RNS_Real:] for
r being
Real st
0 < r holds
ex
s,
x,
y,
z being
Real st
(
0 < s &
s < r &
u = [x,y,z] &
[:].(x - s),(x + s).[,].(y - s),(y + s).[,].(z - s),(z + s).[:] c= Ball (
u,
r) )
theorem Th6:
for
A being
Subset of
[:RNS_Real,RNS_Real,RNS_Real:] st ( for
a,
b,
c being
Real st
[a,b,c] in A holds
ex
Rx being
real-membered set st
( not
Rx is
empty &
Rx is
bounded_above &
Rx = { r where r is Real : ( 0 < r & [:].(a - r),(a + r).[,].(b - r),(b + r).[,].(c - r),(c + r).[:] c= A ) } ) ) holds
ex
F being
Function of
A,
REAL st
for
a,
b,
c being
Real st
[a,b,c] in A holds
ex
Rx being
real-membered set st
( not
Rx is
empty &
Rx is
bounded_above &
Rx = { r where r is Real : ( 0 < r & [:].(a - r),(a + r).[,].(b - r),(b + r).[,].(c - r),(c + r).[:] c= A ) } &
F . [a,b,c] = (upper_bound Rx) / 2 )
Lm3:
for A being set st A c= [:REAL,REAL,REAL:] & A /\ [:RAT,RAT,RAT:] <> {} holds
ex p being sequence of [:REAL,REAL,REAL:] st rng p = A /\ [:RAT,RAT,RAT:]
theorem Th8:
for
I,
J,
K being
closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
f is_continuous_on [:[:I,J:],K:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2,
z1,
z2 being
Real st
x1 in I &
x2 in I &
y1 in J &
y2 in J &
z1 in K &
z2 in K &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r &
|.(z2 - z1).| < r holds
|.((g . [x2,y2,z2]) - (g . [x1,y1,z1])).| < e ) )
theorem Th10:
for
I,
J,
K being
closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
f is_continuous_on [:[:I,J:],K:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2,
y1,
y2,
z1,
z2 being
Real st
x1 in I &
x2 in I &
y1 in J &
y2 in J &
z1 in K &
z2 in K &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r &
|.(z2 - z1).| < r holds
|.((|.g.| . [x2,y2,z2]) - (|.g.| . [x1,y1,z1])).| < e ) )
theorem Th17:
for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
f is_continuous_on dom f &
f = g &
Pg1 = ProjPMap1 (
(R_EAL g),
[x,y]) holds
Pg1 is
continuous
theorem Th19:
for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
f is_continuous_on dom f &
f = g &
Pg1 = ProjPMap1 (
|.(R_EAL g).|,
[x,y]) holds
Pg1 is
continuous
theorem Th21:
for
I,
J being
Subset of
REAL for
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
y in J &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg1 = ProjPMap1 (
(R_EAL g),
[x,y]) holds
(
Pg1 | K is
bounded &
Pg1 is_integrable_on K )
theorem Th22:
for
I,
J being
Subset of
REAL for
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
y in J &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg1 = ProjPMap1 (
(R_EAL g),
[x,y]) holds
(
Pg1 is_integrable_on L-Meas &
integral (
Pg1,
K)
= Integral (
L-Meas,
Pg1) &
integral (
Pg1,
K)
= Integral (
L-Meas,
(ProjPMap1 ((R_EAL g),[x,y]))) &
integral (
Pg1,
K)
= (Integral2 (L-Meas,(R_EAL g))) . [x,y] )
theorem Th23:
for
I,
J being non
empty closed_interval Subset of
REAL for
K being
Subset of
REAL for
z being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg2 being
PartFunc of
[:REAL,REAL:],
REAL st
z in K &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg2 = ProjPMap2 (
(R_EAL g),
z) holds
(
Pg2 is_integrable_on Prod_Measure (
L-Meas,
L-Meas) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
Pg2)
= Integral (
(Prod_Measure (L-Meas,L-Meas)),
(ProjPMap2 ((R_EAL g),z))) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
Pg2)
= (Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) . z )
theorem Th24:
for
I,
J being
Subset of
REAL for
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
y in J &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg1 = ProjPMap1 (
|.(R_EAL g).|,
[x,y]) holds
(
Pg1 | K is
bounded &
Pg1 is_integrable_on K )
theorem Th25:
for
I,
J being
Subset of
REAL for
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL for
E being
Element of
L-Field st
x in I &
y in J &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg1 = ProjPMap1 (
|.(R_EAL g).|,
[x,y]) &
E = K holds
Pg1 is
E -measurable
theorem Th26:
for
I,
J being
Subset of
REAL for
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg1 being
PartFunc of
REAL,
REAL st
x in I &
y in J &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg1 = ProjPMap1 (
|.(R_EAL g).|,
[x,y]) holds
(
Pg1 is_integrable_on L-Meas &
integral (
Pg1,
K)
= Integral (
L-Meas,
Pg1) &
integral (
Pg1,
K)
= Integral (
L-Meas,
(ProjPMap1 (|.(R_EAL g).|,[x,y]))) &
integral (
Pg1,
K)
= (Integral2 (L-Meas,|.(R_EAL g).|)) . [x,y] )
theorem Th27:
for
I,
J being non
empty closed_interval Subset of
REAL for
K being
Subset of
REAL for
z being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg2 being
PartFunc of
[:REAL,REAL:],
REAL for
E being
Element of
sigma (measurable_rectangles (L-Field,L-Field)) st
z in K &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg2 = ProjPMap2 (
|.(R_EAL g).|,
z) &
E = [:I,J:] holds
Pg2 is
E -measurable
theorem Th28:
for
I,
J being non
empty closed_interval Subset of
REAL for
K being
Subset of
REAL for
z being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Pg2 being
PartFunc of
[:REAL,REAL:],
REAL st
z in K &
dom f = [:[:I,J:],K:] &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Pg2 = ProjPMap2 (
|.(R_EAL g).|,
z) holds
(
Pg2 is_integrable_on Prod_Measure (
L-Meas,
L-Meas) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
Pg2)
= Integral (
(Prod_Measure (L-Meas,L-Meas)),
(ProjPMap2 (|.(R_EAL g).|,z))) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
Pg2)
= (Integral1 ((Prod_Measure (L-Meas,L-Meas)),|.(R_EAL g).|)) . z )
theorem Th29:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
E being
Element of
sigma (measurable_rectangles ((sigma (measurable_rectangles (L-Field,L-Field))),L-Field)) st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
E = [:[:I,J:],K:] holds
g is
E -measurable
theorem Th30:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
u1,
u2 being
Element of
[:REAL,REAL:] for
x1,
y1,
x2,
y2 being
Real st
u1 = [x1,y1] &
u2 = [x2,y2] &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r &
u1 in [:I,J:] &
u2 in [:I,J:] holds
for
z being
Element of
REAL st
z in K holds
|.(((ProjPMap1 (|.(R_EAL g).|,u2)) . z) - ((ProjPMap1 (|.(R_EAL g).|,u1)) . z)).| < e ) )
theorem Th31:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
x,
y being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
for
e being
Real st
0 < e holds
ex
r being
Real st
(
0 < r & ( for
u1,
u2 being
Element of
[:REAL,REAL:] for
x1,
y1,
x2,
y2 being
Real st
u1 = [x1,y1] &
u2 = [x2,y2] &
|.(x2 - x1).| < r &
|.(y2 - y1).| < r &
u1 in [:I,J:] &
u2 in [:I,J:] holds
for
z being
Element of
REAL st
z in K holds
|.(((ProjPMap1 ((R_EAL g),u2)) . z) - ((ProjPMap1 ((R_EAL g),u1)) . z)).| < e ) )
Lm4:
for I, J being non empty closed_interval Subset of REAL
for K being Subset of REAL
for v being Element of [:REAL,REAL:]
for f being PartFunc of [:[:RNS_Real,RNS_Real:],RNS_Real:],RNS_Real
for g being PartFunc of [:[:REAL,REAL:],REAL:],REAL st [:[:I,J:],K:] = dom f & f = g & not v in [:I,J:] holds
( (Integral2 (L-Meas,|.(R_EAL g).|)) . v = 0 & (Integral2 (L-Meas,(R_EAL g))) . v = 0 )
Lm5:
for I, J being non empty closed_interval Subset of REAL
for K being Subset of REAL
for z being Element of REAL
for f being PartFunc of [:[:RNS_Real,RNS_Real:],RNS_Real:],RNS_Real
for g being PartFunc of [:[:REAL,REAL:],REAL:],REAL st [:[:I,J:],K:] = dom f & f = g & not z in K holds
( (Integral1 ((Prod_Measure (L-Meas,L-Meas)),|.(R_EAL g).|)) . z = 0 & (Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) . z = 0 )
theorem Th32:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(
Integral2 (
L-Meas,
|.(R_EAL g).|) is
Function of
[:REAL,REAL:],
REAL &
(Integral2 (L-Meas,|.(R_EAL g).|)) | [:I,J:] is
PartFunc of
[:REAL,REAL:],
REAL &
Integral2 (
L-Meas,
(R_EAL g)) is
Function of
[:REAL,REAL:],
REAL &
(Integral2 (L-Meas,(R_EAL g))) | [:I,J:] is
PartFunc of
[:REAL,REAL:],
REAL )
theorem Th33:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Fz being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Fz = (Integral2 (L-Meas,|.(R_EAL g).|)) | [:I,J:] holds
Fz is_uniformly_continuous_on [:I,J:]
theorem Th34:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Fz being
PartFunc of
[:RNS_Real,RNS_Real:],
RNS_Real st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Fz = (Integral2 (L-Meas,(R_EAL g))) | [:I,J:] holds
Fz is_uniformly_continuous_on [:I,J:]
theorem Th35:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
|.(R_EAL g).|) is
Function of
REAL,
REAL &
(Integral1 ((Prod_Measure (L-Meas,L-Meas)),|.(R_EAL g).|)) | K is
PartFunc of
REAL,
REAL &
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
(R_EAL g)) is
Function of
REAL,
REAL &
(Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) | K is
PartFunc of
REAL,
REAL )
Lm6:
for a, b being Real
for x, y being ExtReal st a = x & b = y holds
a - b = x - y
theorem Th36:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Gxy being
PartFunc of
REAL,
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Gxy = (Integral1 ((Prod_Measure (L-Meas,L-Meas)),|.(R_EAL g).|)) | K holds
Gxy is
continuous
theorem Th37:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Gxy being
PartFunc of
REAL,
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Gxy = (Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) | K holds
Gxy is
continuous
theorem Th38:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
Integral2 (
L-Meas,
|.(R_EAL g).|) is
nonnegative
theorem Th39:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
|.(R_EAL g).|) is
nonnegative
theorem Th40:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
u being
Element of
[:REAL,REAL:] for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(Integral2 (L-Meas,|.(R_EAL g).|)) . u < +infty
theorem Th41:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
z being
Element of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(Integral1 ((Prod_Measure (L-Meas,L-Meas)),|.(R_EAL g).|)) . z < +infty
theorem Th42:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
E being
Element of
sigma (measurable_rectangles (L-Field,L-Field)) st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
Integral2 (
L-Meas,
|.(R_EAL g).|) is
E -measurable
theorem Th43:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(
g is_integrable_on Prod_Measure (
(Prod_Measure (L-Meas,L-Meas)),
L-Meas) & ( for
u being
Element of
[:REAL,REAL:] holds
ProjPMap1 (
(R_EAL g),
u)
is_integrable_on L-Meas ) & ( for
U being
Element of
sigma (measurable_rectangles (L-Field,L-Field)) holds
Integral2 (
L-Meas,
(R_EAL g)) is
U -measurable ) &
Integral2 (
L-Meas,
(R_EAL g))
is_integrable_on Prod_Measure (
L-Meas,
L-Meas) &
Integral (
(Prod_Measure ((Prod_Measure (L-Meas,L-Meas)),L-Meas)),
g)
= Integral (
(Prod_Measure (L-Meas,L-Meas)),
(Integral2 (L-Meas,(R_EAL g)))) )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
( ( for
z being
Element of
REAL holds
ProjPMap2 (
(R_EAL g),
z)
is_integrable_on Prod_Measure (
L-Meas,
L-Meas) ) & ( for
V being
Element of
L-Field holds
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
(R_EAL g)) is
V -measurable ) &
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
(R_EAL g))
is_integrable_on L-Meas &
Integral (
(Prod_Measure ((Prod_Measure (L-Meas,L-Meas)),L-Meas)),
g)
= Integral (
L-Meas,
(Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g)))) )
theorem Th45:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
x being
Element of
REAL for
E being
Element of
L-Field st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
x in I holds
ProjPMap1 (
|.(Integral2 (L-Meas,(R_EAL g))).|,
x) is
E -measurable
theorem Th46:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
( ( for
x being
Element of
REAL holds
(Integral2 (L-Meas,|.(Integral2 (L-Meas,(R_EAL g))).|)) . x < +infty ) & ( for
x being
Element of
REAL holds
ProjPMap1 (
(Integral2 (L-Meas,(R_EAL g))),
x)
is_integrable_on L-Meas ) )
theorem Th47:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
y being
Element of
REAL for
E being
Element of
L-Field st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
y in J holds
ProjPMap2 (
|.(Integral2 (L-Meas,(R_EAL g))).|,
y) is
E -measurable
theorem Th48:
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
( ( for
y being
Element of
REAL holds
(Integral1 (L-Meas,|.(Integral2 (L-Meas,(R_EAL g))).|)) . y < +infty ) & ( for
y being
Element of
REAL holds
ProjPMap2 (
(Integral2 (L-Meas,(R_EAL g))),
y)
is_integrable_on L-Meas ) )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
E being
Element of
sigma (measurable_rectangles (L-Field,L-Field)) st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
Integral2 (
L-Meas,
|.(R_EAL g).|) is
E -measurable
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
E being
Element of
L-Field st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
Integral1 (
(Prod_Measure (L-Meas,L-Meas)),
|.(R_EAL g).|) is
E -measurable
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
x being
Element of
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(
ProjPMap1 (
(Integral2 (L-Meas,(R_EAL g))),
x) is
Function of
REAL,
REAL &
ProjPMap1 (
|.(Integral2 (L-Meas,(R_EAL g))).|,
x) is
Function of
REAL,
REAL )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
y being
Element of
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
(
ProjPMap2 (
(Integral2 (L-Meas,(R_EAL g))),
y) is
Function of
REAL,
REAL &
ProjPMap2 (
|.(Integral2 (L-Meas,(R_EAL g))).|,
y) is
Function of
REAL,
REAL )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
|.(Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))).| is
Function of
REAL,
REAL
theorem Th54:
for
x being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom g holds
Integral (
L-Meas,
((ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | (REAL \ J)))
= 0
theorem Th55:
for
y being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom g holds
Integral (
L-Meas,
((ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | (REAL \ I)))
= 0
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom g holds
Integral (
L-Meas,
((Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) | (REAL \ K)))
= 0
theorem
for
x being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P1Gz being
PartFunc of
REAL,
REAL st
x in I &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P1Gz = (ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | J holds
P1Gz is
continuous
theorem
for
y being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P2Gz being
PartFunc of
REAL,
REAL st
y in J &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P2Gz = (ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | I holds
P2Gz is
continuous
theorem Th59:
for
x being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P1Gz being
PartFunc of
REAL,
REAL st
x in I &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P1Gz = (ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | J holds
(
P1Gz || J is
bounded &
P1Gz is_integrable_on J )
theorem Th60:
for
y being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P2Gz being
PartFunc of
REAL,
REAL st
y in J &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P2Gz = (ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | I holds
(
P2Gz || I is
bounded &
P2Gz is_integrable_on I )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Gxy being
PartFunc of
REAL,
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Gxy = (Integral1 ((Prod_Measure (L-Meas,L-Meas)),(R_EAL g))) | K holds
(
Gxy || K is
bounded &
Gxy is_integrable_on K )
theorem
for
x being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P1Gz being
PartFunc of
REAL,
REAL st
x in I &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P1Gz = (ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | J holds
(
(ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | J is_integrable_on L-Meas &
integral (
P1Gz,
J)
= Integral (
L-Meas,
((ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x)) | J)) &
integral (
P1Gz,
J)
= Integral (
L-Meas,
(ProjPMap1 ((Integral2 (L-Meas,(R_EAL g))),x))) &
integral (
P1Gz,
J)
= (Integral2 (L-Meas,(Integral2 (L-Meas,(R_EAL g))))) . x )
theorem
for
y being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P2Gz being
PartFunc of
REAL,
REAL st
y in J &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P2Gz = (ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | I holds
(
(ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | I is_integrable_on L-Meas &
integral (
P2Gz,
I)
= Integral (
L-Meas,
((ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y)) | I)) &
integral (
P2Gz,
I)
= Integral (
L-Meas,
(ProjPMap2 ((Integral2 (L-Meas,(R_EAL g))),y))) &
integral (
P2Gz,
I)
= (Integral1 (L-Meas,(Integral2 (L-Meas,(R_EAL g))))) . y )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
( ( for
U being
Element of
L-Field holds
Integral2 (
L-Meas,
(Integral2 (L-Meas,(R_EAL g)))) is
U -measurable ) &
Integral2 (
L-Meas,
(Integral2 (L-Meas,(R_EAL g))))
is_integrable_on L-Meas &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
(Integral2 (L-Meas,(R_EAL g))))
= Integral (
L-Meas,
(Integral2 (L-Meas,(Integral2 (L-Meas,(R_EAL g)))))) &
Integral (
(Prod_Measure ((Prod_Measure (L-Meas,L-Meas)),L-Meas)),
g)
= Integral (
L-Meas,
(Integral2 (L-Meas,(Integral2 (L-Meas,(R_EAL g)))))) &
(Integral2 (L-Meas,(R_EAL g))) | [:I,J:] is_integrable_on Prod_Measure (
L-Meas,
L-Meas) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))
= Integral (
L-Meas,
(Integral2 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:])))) )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g holds
( ( for
V being
Element of
L-Field holds
Integral1 (
L-Meas,
(Integral2 (L-Meas,(R_EAL g)))) is
V -measurable ) &
Integral1 (
L-Meas,
(Integral2 (L-Meas,(R_EAL g))))
is_integrable_on L-Meas &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
(Integral2 (L-Meas,(R_EAL g))))
= Integral (
L-Meas,
(Integral1 (L-Meas,(Integral2 (L-Meas,(R_EAL g)))))) &
Integral (
(Prod_Measure ((Prod_Measure (L-Meas,L-Meas)),L-Meas)),
g)
= Integral (
L-Meas,
(Integral1 (L-Meas,(Integral2 (L-Meas,(R_EAL g)))))) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))
= Integral (
L-Meas,
(Integral1 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:])))) )
theorem
for
x being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P1Gz being
PartFunc of
REAL,
REAL st
x in I &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P1Gz = ProjPMap1 (
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),
x) holds
(
P1Gz is
continuous &
dom (ProjPMap1 (((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),x)) = J &
P1Gz | J is
bounded &
P1Gz is_integrable_on J &
integral (
P1Gz,
J)
= Integral (
L-Meas,
(ProjPMap1 (((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),x))) &
integral (
P1Gz,
J)
= (Integral2 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) . x &
ProjPMap1 (
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),
x)
is_integrable_on L-Meas )
theorem
for
y being
Element of
REAL for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
P2Gz being
PartFunc of
REAL,
REAL st
y in J &
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
P2Gz = ProjPMap2 (
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),
y) holds
(
P2Gz is
continuous &
dom (ProjPMap2 (((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),y)) = I &
P2Gz | I is
bounded &
P2Gz is_integrable_on I &
integral (
P2Gz,
I)
= Integral (
L-Meas,
(ProjPMap2 (((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),y))) &
integral (
P2Gz,
I)
= (Integral1 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) . y &
ProjPMap2 (
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]),
y)
is_integrable_on L-Meas )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Gzy being
PartFunc of
REAL,
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Gzy = (Integral2 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | I holds
(
dom Gzy = I &
Gzy is
continuous &
Gzy || I is
bounded &
Gzy is_integrable_on I &
(Integral2 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | I is_integrable_on L-Meas &
Integral (
L-Meas,
((Integral2 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | I))
= integral (
Gzy,
I) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))
= integral (
Gzy,
I) )
theorem
for
I,
J,
K being non
empty closed_interval Subset of
REAL for
f being
PartFunc of
[:[:RNS_Real,RNS_Real:],RNS_Real:],
RNS_Real for
g being
PartFunc of
[:[:REAL,REAL:],REAL:],
REAL for
Gzx being
PartFunc of
REAL,
REAL st
[:[:I,J:],K:] = dom f &
f is_continuous_on [:[:I,J:],K:] &
f = g &
Gzx = (Integral1 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | J holds
(
dom Gzx = J &
Gzx is
continuous &
Gzx || J is
bounded &
Gzx is_integrable_on J &
(Integral1 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | J is_integrable_on L-Meas &
Integral (
L-Meas,
((Integral1 (L-Meas,((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))) | J))
= integral (
Gzx,
J) &
Integral (
(Prod_Measure (L-Meas,L-Meas)),
((Integral2 (L-Meas,(R_EAL g))) | [:I,J:]))
= integral (
Gzx,
J) )