LemmaX:
for X being RealLinearSpace-Sequence holds dom (carr X) = dom X
LM14:
for X being RealLinearSpace
for x1, x2, x3, x4 being Point of X holds (x1 + x2) + (x3 + x4) = (x1 + x3) + (x2 + x4)
definition
let X be
RealLinearSpace-Sequence;
let Y be
RealLinearSpace;
func R_VectorSpace_of_MultilinearOperators (
X,
Y)
-> strict RLSStruct equals
RLSStruct(#
(MultilinearOperators (X,Y)),
(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #);
coherence
RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is strict RLSStruct
;
end;
::
deftheorem defines
R_VectorSpace_of_MultilinearOperators LOPBAN10:def 5 :
for X being RealLinearSpace-Sequence
for Y being RealLinearSpace holds R_VectorSpace_of_MultilinearOperators (X,Y) = RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #);
theorem
for
X being
RealLinearSpace-Sequence for
Y being
RealLinearSpace holds
RLSStruct(#
(MultilinearOperators (X,Y)),
(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is
Subspace of
RealVectSpace ( the
carrier of
(product X),
Y)
by RSSPACE:11;
Def2:
for X being RealNormSpace-Sequence
for i being Element of dom X
for x being Element of (product X) ex x0 being Element of product (carr X) st
( x0 = x & reproj (i,x) = reproj (i,x0) )
LM14:
for X being RealNormSpace
for x1, x2, x3, x4 being Point of X holds (x1 + x2) + (x3 + x4) = (x1 + x3) + (x2 + x4)
theorem
for
X being
RealNormSpace-Sequence for
Y being
RealNormSpace holds
RLSStruct(#
(MultilinearOperators (X,Y)),
(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is
Subspace of
RealVectSpace ( the
carrier of
(product X),
Y)
by RSSPACE:11;
registration
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
cluster RLSStruct(#
(MultilinearOperators (X,Y)),
(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is Abelian & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is add-associative & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is right_zeroed & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is right_complementable & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is vector-distributive & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is scalar-distributive & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is scalar-associative & RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is scalar-unital )
by RSSPACE:11;
end;
definition
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
func R_VectorSpace_of_MultilinearOperators (
X,
Y)
-> strict RealLinearSpace equals
RLSStruct(#
(MultilinearOperators (X,Y)),
(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),
(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #);
coherence
RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #) is strict RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_MultilinearOperators LOPBAN10:def 8 :
for X being RealNormSpace-Sequence
for Y being RealNormSpace holds R_VectorSpace_of_MultilinearOperators (X,Y) = RLSStruct(# (MultilinearOperators (X,Y)),(Zero_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Add_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))),(Mult_ ((MultilinearOperators (X,Y)),(RealVectSpace ( the carrier of (product X),Y)))) #);
EXTh10:
for G being RealNormSpace-Sequence holds the carrier of (product G) = product (carr G)
theorem
for
X being
RealNormSpace-Sequence for
Y being
RealNormSpace holds
RLSStruct(#
(BoundedMultilinearOperators (X,Y)),
(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is
Subspace of
R_VectorSpace_of_MultilinearOperators (
X,
Y)
by RSSPACE:11;
registration
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
cluster RLSStruct(#
(BoundedMultilinearOperators (X,Y)),
(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is Abelian & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is add-associative & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is right_zeroed & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is right_complementable & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is vector-distributive & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is scalar-distributive & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is scalar-associative & RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is scalar-unital )
by RSSPACE:11;
end;
definition
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
func R_VectorSpace_of_BoundedMultilinearOperators (
X,
Y)
-> strict RealLinearSpace equals
RLSStruct(#
(BoundedMultilinearOperators (X,Y)),
(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #);
coherence
RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #) is strict RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_BoundedMultilinearOperators LOPBAN10:def 12 :
for X being RealNormSpace-Sequence
for Y being RealNormSpace holds R_VectorSpace_of_BoundedMultilinearOperators (X,Y) = RLSStruct(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))) #);
LM31:
for F being FinSequence of REAL st ( for i being Element of dom F holds F . i > 0 ) holds
Product F > 0
LM36A:
for F, G being FinSequence of REAL st len F = len G & ( for i being Element of NAT st i in dom F holds
G . i = (F . i) " ) holds
Product G = (Product F) "
definition
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
existence
ex b1 being Function of (BoundedMultilinearOperators (X,Y)),REAL st
for x being object st x in BoundedMultilinearOperators (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y)))
uniqueness
for b1, b2 being Function of (BoundedMultilinearOperators (X,Y)),REAL st ( for x being object st x in BoundedMultilinearOperators (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) & ( for x being object st x in BoundedMultilinearOperators (X,Y) holds
b2 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) holds
b1 = b2
end;
Th29:
for X being RealNormSpace-Sequence
for Y being RealNormSpace
for f being Lipschitzian MultilinearOperator of X,Y holds modetrans (f,X,Y) = f
definition
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
func R_NormSpace_of_BoundedMultilinearOperators (
X,
Y)
-> non
empty strict NORMSTR equals
NORMSTR(#
(BoundedMultilinearOperators (X,Y)),
(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),
(BoundedMultilinearOperatorsNorm (X,Y)) #);
coherence
NORMSTR(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(BoundedMultilinearOperatorsNorm (X,Y)) #) is non empty strict NORMSTR
;
end;
::
deftheorem defines
R_NormSpace_of_BoundedMultilinearOperators LOPBAN10:def 16 :
for X being RealNormSpace-Sequence
for Y being RealNormSpace holds R_NormSpace_of_BoundedMultilinearOperators (X,Y) = NORMSTR(# (BoundedMultilinearOperators (X,Y)),(Zero_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Add_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(Mult_ ((BoundedMultilinearOperators (X,Y)),(R_VectorSpace_of_MultilinearOperators (X,Y)))),(BoundedMultilinearOperatorsNorm (X,Y)) #);
Th38:
for X being RealNormSpace-Sequence
for Y being RealNormSpace holds
( R_NormSpace_of_BoundedMultilinearOperators (X,Y) is reflexive & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is discerning & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is RealNormSpace-like )
registration
let X be
RealNormSpace-Sequence;
let Y be
RealNormSpace;
coherence
( R_NormSpace_of_BoundedMultilinearOperators (X,Y) is reflexive & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is discerning & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is RealNormSpace-like & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is vector-distributive & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is scalar-distributive & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is scalar-associative & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is scalar-unital & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is Abelian & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is add-associative & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is right_zeroed & R_NormSpace_of_BoundedMultilinearOperators (X,Y) is right_complementable )
by Th39;
end;