ABS1:
for x, y being Real st x >= 0 & x <= y holds
|.x.| <= |.y.|
by TOPREAL6:2;
EXpReq11:
for x being Real st exp_R x = 1 holds
x = 0
by SIN_COS7:29;
theorem asymTT2:
for
a,
b,
p,
q being
Real st
a > 0 &
p > 0 &
(- b) / a < q / p holds
(
(- b) / a < (q - b) / (a + p) &
(q - b) / (a + p) < q / p &
((a * q) + (b * p)) / (a + p) > 0 )
theorem asymTT3:
for
a,
b,
p,
q,
s being
Real st
a > 0 &
p > 0 &
(s - b) / a = (s - q) / (- p) holds
(
(s - b) / a = (q - b) / (a + p) &
(s - q) / (- p) = (q - b) / (a + p) )
theorem asymTT4:
for
a,
b,
p,
q,
s being
Real st
a > 0 &
p > 0 &
(s - b) / a < (s - q) / (- p) holds
(
(s - b) / a < (q - b) / (a + p) &
(q - b) / (a + p) < (s - q) / (- p) )
MM4:
for g being Function of REAL,REAL holds { f where f is Function of REAL,REAL : for x being Real holds f . x = max (0,(min (1,(g . x)))) } c= Membership_Funcs REAL
theorem
{ f where f is Function of REAL,REAL, a, b, c, d is Real : for x being Real holds f . x = max (0,(min (1,((c * (sin ((a * x) + b))) + d)))) } c= { f where f, g is Function of REAL,REAL : for x being Real holds f . x = max (0,(min (1,(g . x)))) }
theorem MM60:
{ f where f is Function of REAL,REAL, a, b, c, d is Real : for x being Real holds f . x = max (0,(min (1,((c * (arctan ((a * x) + b))) + d)))) } c= { f where f, g is Function of REAL,REAL : for x being Real holds f . x = max (0,(min (1,(g . x)))) }
LmABS:
for a, x being Real st 0 <= a holds
( ( x <= - a or a <= x ) iff a <= |.x.| )
TR2XX:
{ (TriangularFS (a,b,c)) where a, b, c is Real : ( a < b & b < c ) } c= Membership_Funcs REAL
theorem
for
a,
b,
p,
q being
Real for
f being
Function of
REAL,
REAL st ( for
x being
Real holds
f . x = max (
0,
(min (1,((((AffineMap (a,b)) | ].-infty,((q - b) / (a - p)).[) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),+infty.[)) . x)))) ) holds
f is
FuzzySet of
REAL
theorem TrZoi1:
for
a,
b,
c,
d being
Real st
a < b &
b < c &
c < d holds
(
(TrapezoidalFS (a,b,c,d)) . a = 0 &
(TrapezoidalFS (a,b,c,d)) . b = 1 &
(TrapezoidalFS (a,b,c,d)) . c = 1 &
(TrapezoidalFS (a,b,c,d)) . d = 0 )
theorem asymTT6:
for
a,
b,
p,
q being
Real st
a > 0 &
p > 0 &
(- b) / a < q / p &
(1 - b) / a = (1 - q) / (- p) holds
for
x being
Real holds
(TriangularFS (((- b) / a),((1 - b) / a),(q / p))) . x = max (
0,
(min (1,((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x))))
theorem asymTT7:
for
a,
b,
p,
q being
Real st
a > 0 &
p > 0 &
(1 - b) / a < (1 - q) / (- p) holds
for
x being
Real holds
(TrapezoidalFS (((- b) / a),((1 - b) / a),((1 - q) / (- p)),(q / p))) . x = max (
0,
(min (1,((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x))))
theorem asymTT51:
for
a,
b,
p,
q being
Real st
a > 0 &
p > 0 holds
ex
r being
Real st
(
0 < r & ( for
x1,
x2 being
Real st
x1 in dom (((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) &
x2 in dom (((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) holds
|.(((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x1) - ((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x2)).| <= r * |.(x1 - x2).| ) )
theorem asymTT5:
for
a,
b,
p,
q,
r,
s being
Real for
f being
Function of
REAL,
REAL st
a > 0 &
p > 0 & ( for
x being
Real holds
f . x = max (
r,
(min (s,((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x)))) ) holds
f is
Lipschitzian
theorem asymTT9:
for
a,
b,
c being
Real st
a < b &
b < c holds
for
x being
Real holds
(TriangularFS (a,b,c)) . x = max (
0,
(min (1,((((AffineMap ((1 / (b - a)),(- (a / (b - a))))) | ].-infty,b.[) +* ((AffineMap ((- (1 / (c - b))),(c / (c - b)))) | [.b,+infty.[)) . x))))
theorem asymTT8:
for
a,
b,
c,
d being
Real st
a < b &
b < c &
c < d holds
for
x being
Real holds
(TrapezoidalFS (a,b,c,d)) . x = max (
0,
(min (1,((((AffineMap ((1 / (b - a)),(- (a / (b - a))))) | ].-infty,(((b * d) - (a * c)) / (((d - c) + b) - a)).[) +* ((AffineMap ((- (1 / (d - c))),(d / (d - c)))) | [.(((b * d) - (a * c)) / (((d - c) + b) - a)),+infty.[)) . x))))
theorem
for
a,
b,
p,
q being
Real for
f being
Function of
REAL,
REAL st
a > 0 &
p > 0 & ( for
x being
Real holds
f . x = max (
0,
(min (1,((((AffineMap (a,b)) | ].-infty,((q - b) / (a + p)).[) +* ((AffineMap ((- p),q)) | [.((q - b) / (a + p)),+infty.[)) . x)))) ) holds
f is
Lipschitzian by asymTT5;