definition
let X be non
empty set ;
let f,
g be
Membership_Func of
X;
minredefine func min (
f,
g)
-> Element of
bool [:X,REAL:];
commutativity
for f, g being Membership_Func of X holds min (f,g) = min (g,f)
;
maxredefine func max (
f,
g)
-> Element of
bool [:X,REAL:];
commutativity
for f, g being Membership_Func of X holds max (f,g) = max (g,f)
;
end;
Lm1:
for X, Y, Z being non empty set
for R being RMembership_Func of X,Y
for S being RMembership_Func of Y,Z
for x being Element of X
for z being Element of Z holds
( rng (min (R,S,x,z)) = { ((R . [x,y]) "/\" (S . [y,z])) where y is Element of Y : verum } & rng (min (R,S,x,z)) <> {} )
definition
let X be non
empty set ;
let R be
RMembership_Func of
X,
X;
let n be
Nat;
existence
ex b1 being RMembership_Func of X,X ex F being sequence of (Funcs ([:X,X:],[.0,1.])) st
( b1 = F . n & F . 0 = Imf (X,X) & ( for k being Nat ex Q being RMembership_Func of X,X st
( F . k = Q & F . (k + 1) = Q (#) R ) ) )
uniqueness
for b1, b2 being RMembership_Func of X,X st ex F being sequence of (Funcs ([:X,X:],[.0,1.])) st
( b1 = F . n & F . 0 = Imf (X,X) & ( for k being Nat ex Q being RMembership_Func of X,X st
( F . k = Q & F . (k + 1) = Q (#) R ) ) ) & ex F being sequence of (Funcs ([:X,X:],[.0,1.])) st
( b2 = F . n & F . 0 = Imf (X,X) & ( for k being Nat ex Q being RMembership_Func of X,X st
( F . k = Q & F . (k + 1) = Q (#) R ) ) ) holds
b1 = b2
end;
Lm2:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ((R . (x,y)) "/\" ((@ ("\/" (Q,(FuzzyLattice [:X,X:])))) . (y,z))) where y is Element of X : verum } = { ((R . [x,y]) "/\" ("\/" ((pi (Q,[y,z])),(RealPoset [.0,1.])))) where y is Element of X : verum }
Lm3:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ((R . [x,y]) "/\" ("\/" ((pi (Q,[y,z])),(RealPoset [.0,1.])))) where y is Element of X : verum } = { ("\/" ( { ((R . [x,y9]) "/\" b) where b is Element of (RealPoset [.0,1.]) : b in pi (Q,[y9,z]) } ,(RealPoset [.0,1.]))) where y9 is Element of X : verum }
Lm4:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ("\/" ( { ((R . [x,y]) "/\" b) where b is Element of (RealPoset [.0,1.]) : b in pi (Q,[y,z]) } ,(RealPoset [.0,1.]))) where y is Element of X : verum } = { ("\/" ( { ((R . [x,y9]) "/\" (r . [y9,z])) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } ,(RealPoset [.0,1.]))) where y9 is Element of X : verum }
Lm5:
for X, Y, Z being non empty set
for R being RMembership_Func of X,Y
for S being RMembership_Func of Y,Z
for x being Element of X
for z being Element of Z holds
( rng (min (R,S,x,z)) = { ((R . [x,y]) "/\" (S . [y,z])) where y is Element of Y : verum } & rng (min (R,S,x,z)) <> {} )
Lm6:
for X, Y, Z being non empty set
for R being RMembership_Func of X,Y
for S being RMembership_Func of Y,Z
for x being Element of X
for z being Element of Z holds (R (#) S) . [x,z] = "\/" ( { ((R . [x,y]) "/\" (S . [y,z])) where y is Element of Y : verum } ,(RealPoset [.0,1.]))
Lm7:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ("\/" ( { ((R . [x,y]) "/\" (r . [y,z])) where y is Element of X : verum } ,(RealPoset [.0,1.]))) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } = { ("\/" ( { ((R . [x,y]) "/\" ((@ r9) . [y,z])) where y is Element of X : verum } ,(RealPoset [.0,1.]))) where r9 is Element of (FuzzyLattice [:X,X:]) : r9 in Q }
Lm8:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ("\/" ( { ((R . [x,y]) "/\" ((@ r) . [y,z])) where y is Element of X : verum } ,(RealPoset [.0,1.]))) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } = { ((R (#) (@ r)) . [x,z]) where r is Element of (FuzzyLattice [:X,X:]) : r in Q }
Lm9:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds { ((R (#) (@ r)) . [x,z]) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } = pi ( { (R (#) (@ r)) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } ,[x,z])
Lm10:
for X being non empty set
for R being RMembership_Func of X,X
for Q being Subset of (FuzzyLattice [:X,X:])
for x, z being Element of X holds "\/" ( { ("\/" ( { ((R . [x,y]) "/\" (r . [y,z])) where r is Element of (FuzzyLattice [:X,X:]) : r in Q } ,(RealPoset [.0,1.]))) where y is Element of X : verum } ,(RealPoset [.0,1.])) = "\/" ( { ("\/" ( { ((R . [x,y]) "/\" (r9 . [y,z])) where y is Element of X : verum } ,(RealPoset [.0,1.]))) where r9 is Element of (FuzzyLattice [:X,X:]) : r9 in Q } ,(RealPoset [.0,1.]))