definition
let ap,
bp,
cp,
dp,
cin be
set ;
func BitFTA0Str (
ap,
bp,
cp,
dp,
cin)
-> non
empty non
void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign equals
(BitGFA0Str (ap,bp,cp)) +* (BitGFA0Str ((GFA0AdderOutput (ap,bp,cp)),cin,dp));
coherence
(BitGFA0Str (ap,bp,cp)) +* (BitGFA0Str ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) is non empty non void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign
;
end;
::
deftheorem defines
BitFTA0Str FTACELL1:def 1 :
for ap, bp, cp, dp, cin being set holds BitFTA0Str (ap,bp,cp,dp,cin) = (BitGFA0Str (ap,bp,cp)) +* (BitGFA0Str ((GFA0AdderOutput (ap,bp,cp)),cin,dp));
definition
let ap,
bp,
cp,
dp,
cin be
set ;
func BitFTA0Circ (
ap,
bp,
cp,
dp,
cin)
-> strict gate`2=den Boolean Circuit of
BitFTA0Str (
ap,
bp,
cp,
dp,
cin)
equals
(BitGFA0Circ (ap,bp,cp)) +* (BitGFA0Circ ((GFA0AdderOutput (ap,bp,cp)),cin,dp));
coherence
(BitGFA0Circ (ap,bp,cp)) +* (BitGFA0Circ ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) is strict gate`2=den Boolean Circuit of BitFTA0Str (ap,bp,cp,dp,cin)
;
end;
::
deftheorem defines
BitFTA0Circ FTACELL1:def 2 :
for ap, bp, cp, dp, cin being set holds BitFTA0Circ (ap,bp,cp,dp,cin) = (BitGFA0Circ (ap,bp,cp)) +* (BitGFA0Circ ((GFA0AdderOutput (ap,bp,cp)),cin,dp));
theorem Th1:
for
ap,
bp,
cp,
dp,
cin being
set holds
InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) = (({[<*ap,bp*>,xor2],(GFA0AdderOutput (ap,bp,cp))} \/ {[<*ap,bp*>,and2],[<*bp,cp*>,and2],[<*cp,ap*>,and2],(GFA0CarryOutput (ap,bp,cp))}) \/ {[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2],(GFA0AdderOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp))}) \/ {[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2],[<*cin,dp*>,and2],[<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2],(GFA0CarryOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp))}
Lm1:
for x, y, z, p being set holds GFA0AdderOutput (x,y,z) <> [p,and2]
Lm2:
for ap, bp, cp being non pair set
for x, y, z being set holds InputVertices (BitGFA0Str (ap,bp,cp)) misses InnerVertices (BitGFA0Str (x,y,z))
theorem Th3:
for
ap,
bp,
cp,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not
cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) = {ap,bp,cp,dp,cin}
theorem Th4:
for
ap,
bp,
cp,
dp,
cin being
set holds
(
ap in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
bp in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
cp in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
dp in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
cin in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*ap,bp*>,xor2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0AdderOutput (
ap,
bp,
cp)
in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*ap,bp*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*bp,cp*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*cp,ap*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0CarryOutput (
ap,
bp,
cp)
in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0AdderOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp)
in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*cin,dp*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0CarryOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp)
in the
carrier of
(BitFTA0Str (ap,bp,cp,dp,cin)) )
theorem Th5:
for
ap,
bp,
cp,
dp,
cin being
set holds
(
[<*ap,bp*>,xor2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0AdderOutput (
ap,
bp,
cp)
in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*ap,bp*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*bp,cp*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*cp,ap*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0CarryOutput (
ap,
bp,
cp)
in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0AdderOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp)
in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*cin,dp*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
[<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
GFA0CarryOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp)
in InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) )
theorem Th6:
for
ap,
bp,
cp,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not
cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
(
ap in InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
bp in InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
cp in InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
dp in InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) &
cin in InputVertices (BitFTA0Str (ap,bp,cp,dp,cin)) )
definition
let ap,
bp,
cp,
dp,
cin be
set ;
func BitFTA0CarryOutput (
ap,
bp,
cp,
dp,
cin)
-> Element of
InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) equals
GFA0CarryOutput (
ap,
bp,
cp);
coherence
GFA0CarryOutput (ap,bp,cp) is Element of InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin))
by Th5;
func BitFTA0AdderOutputI (
ap,
bp,
cp,
dp,
cin)
-> Element of
InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) equals
GFA0AdderOutput (
ap,
bp,
cp);
coherence
GFA0AdderOutput (ap,bp,cp) is Element of InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin))
by Th5;
func BitFTA0AdderOutputP (
ap,
bp,
cp,
dp,
cin)
-> Element of
InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) equals
GFA0CarryOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp);
coherence
GFA0CarryOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp) is Element of InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin))
by Th5;
func BitFTA0AdderOutputQ (
ap,
bp,
cp,
dp,
cin)
-> Element of
InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin)) equals
GFA0AdderOutput (
(GFA0AdderOutput (ap,bp,cp)),
cin,
dp);
coherence
GFA0AdderOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp) is Element of InnerVertices (BitFTA0Str (ap,bp,cp,dp,cin))
by Th5;
end;
::
deftheorem defines
BitFTA0CarryOutput FTACELL1:def 3 :
for ap, bp, cp, dp, cin being set holds BitFTA0CarryOutput (ap,bp,cp,dp,cin) = GFA0CarryOutput (ap,bp,cp);
::
deftheorem defines
BitFTA0AdderOutputI FTACELL1:def 4 :
for ap, bp, cp, dp, cin being set holds BitFTA0AdderOutputI (ap,bp,cp,dp,cin) = GFA0AdderOutput (ap,bp,cp);
::
deftheorem defines
BitFTA0AdderOutputP FTACELL1:def 5 :
for ap, bp, cp, dp, cin being set holds BitFTA0AdderOutputP (ap,bp,cp,dp,cin) = GFA0CarryOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp);
::
deftheorem defines
BitFTA0AdderOutputQ FTACELL1:def 6 :
for ap, bp, cp, dp, cin being set holds BitFTA0AdderOutputQ (ap,bp,cp,dp,cin) = GFA0AdderOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp);
theorem
for
ap,
bp,
cp being non
pair set for
dp,
cin being
set for
s being
State of
(BitFTA0Circ (ap,bp,cp,dp,cin)) for
a1,
a2,
a3 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bp &
a3 = s . cp holds
(
(Following (s,2)) . (BitFTA0CarryOutput (ap,bp,cp,dp,cin)) = ((a1 '&' a2) 'or' (a2 '&' a3)) 'or' (a3 '&' a1) &
(Following (s,2)) . (BitFTA0AdderOutputI (ap,bp,cp,dp,cin)) = (a1 'xor' a2) 'xor' a3 )
theorem Th8:
for
ap,
bp,
cp,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not
cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for
s being
State of
(BitFTA0Circ (ap,bp,cp,dp,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bp &
a3 = s . cp &
a4 = s . dp &
a5 = s . cin holds
(
(Following (s,2)) . (GFA0AdderOutput (ap,bp,cp)) = (a1 'xor' a2) 'xor' a3 &
(Following (s,2)) . ap = a1 &
(Following (s,2)) . bp = a2 &
(Following (s,2)) . cp = a3 &
(Following (s,2)) . dp = a4 &
(Following (s,2)) . cin = a5 )
Lm3:
for ap, bp, cp, dp being non pair set
for cin being set
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a123, a4, a5 being Element of BOOLEAN st a123 = s . (GFA0AdderOutput (ap,bp,cp)) & a4 = s . dp & a5 = s . cin holds
( (Following s) . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2] = a123 '&' a5 & (Following s) . [<*cin,dp*>,and2] = a5 '&' a4 & (Following s) . [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] = a4 '&' a123 )
Lm4:
for ap, bp, cp, dp being non pair set
for cin being set
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a123, a5 being Element of BOOLEAN st a123 = s . (GFA0AdderOutput (ap,bp,cp)) & a5 = s . cin holds
(Following s) . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2] = a123 'xor' a5
Lm5:
for ap, bp, cp, dp being non pair set
for cin being set st cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bp & a3 = s . cp & a4 = s . dp & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2] = ((a1 'xor' a2) 'xor' a3) '&' a5 & (Following (s,3)) . [<*cin,dp*>,and2] = a5 '&' a4 & (Following (s,3)) . [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] = a4 '&' ((a1 'xor' a2) 'xor' a3) & (Following (s,3)) . ap = a1 & (Following (s,3)) . bp = a2 & (Following (s,3)) . cp = a3 & (Following (s,3)) . dp = a4 & (Following (s,3)) . cin = a5 )
Lm6:
for ap, bp, cp, dp being non pair set
for cin being set st cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bp & a3 = s . cp & a4 = s . dp & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2] = ((a1 'xor' a2) 'xor' a3) 'xor' a5 & (Following (s,3)) . ap = a1 & (Following (s,3)) . bp = a2 & (Following (s,3)) . cp = a3 & (Following (s,3)) . dp = a4 & (Following (s,3)) . cin = a5 )
Lm7:
for ap, bp, cp, dp being non pair set
for cin being set
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a123x, a123y, a123z being Element of BOOLEAN st a123x = s . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,and2] & a123y = s . [<*cin,dp*>,and2] & a123z = s . [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] holds
(Following s) . (GFA0CarryOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) = (a123x 'or' a123y) 'or' a123z
Lm8:
for ap, bp, cp, dp being non pair set
for cin being set
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a1235, a4 being Element of BOOLEAN st a1235 = s . [<*(GFA0AdderOutput (ap,bp,cp)),cin*>,xor2] & a4 = s . dp holds
(Following s) . (GFA0AdderOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) = a1235 'xor' a4
Lm9:
for ap, bp, cp, dp being non pair set
for cin being set st cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bp & a3 = s . cp & a4 = s . dp & a5 = s . cin holds
( (Following (s,4)) . (GFA0CarryOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) = ((((a1 'xor' a2) 'xor' a3) '&' a5) 'or' (a5 '&' a4)) 'or' (a4 '&' ((a1 'xor' a2) 'xor' a3)) & (Following (s,4)) . ap = a1 & (Following (s,4)) . bp = a2 & (Following (s,4)) . cp = a3 & (Following (s,4)) . dp = a4 & (Following (s,4)) . cin = a5 )
Lm10:
for ap, bp, cp, dp being non pair set
for cin being set st cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for s being State of (BitFTA0Circ (ap,bp,cp,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bp & a3 = s . cp & a4 = s . dp & a5 = s . cin holds
( (Following (s,4)) . (GFA0AdderOutput ((GFA0AdderOutput (ap,bp,cp)),cin,dp)) = (((a1 'xor' a2) 'xor' a3) 'xor' a4) 'xor' a5 & (Following (s,4)) . ap = a1 & (Following (s,4)) . bp = a2 & (Following (s,4)) . cp = a3 & (Following (s,4)) . dp = a4 & (Following (s,4)) . cin = a5 )
theorem
for
ap,
bp,
cp,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] & not
cin in InnerVertices (BitGFA0Str (ap,bp,cp)) holds
for
s being
State of
(BitFTA0Circ (ap,bp,cp,dp,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bp &
a3 = s . cp &
a4 = s . dp &
a5 = s . cin holds
(
(Following (s,4)) . (BitFTA0AdderOutputP (ap,bp,cp,dp,cin)) = ((((a1 'xor' a2) 'xor' a3) '&' a5) 'or' (a5 '&' a4)) 'or' (a4 '&' ((a1 'xor' a2) 'xor' a3)) &
(Following (s,4)) . (BitFTA0AdderOutputQ (ap,bp,cp,dp,cin)) = (((a1 'xor' a2) 'xor' a3) 'xor' a4) 'xor' a5 )
by Lm9, Lm10;
theorem
for
ap,
bp,
cp,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA0AdderOutput (ap,bp,cp))*>,and2] holds
for
s being
State of
(BitFTA0Circ (ap,bp,cp,dp,cin)) holds
Following (
s,4) is
stable
definition
let ap,
bm,
cp,
dm,
cin be
set ;
func BitFTA1Str (
ap,
bm,
cp,
dm,
cin)
-> non
empty non
void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign equals
(BitGFA1Str (ap,bm,cp)) +* (BitGFA2Str ((GFA1AdderOutput (ap,bm,cp)),cin,dm));
coherence
(BitGFA1Str (ap,bm,cp)) +* (BitGFA2Str ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) is non empty non void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign
;
end;
::
deftheorem defines
BitFTA1Str FTACELL1:def 7 :
for ap, bm, cp, dm, cin being set holds BitFTA1Str (ap,bm,cp,dm,cin) = (BitGFA1Str (ap,bm,cp)) +* (BitGFA2Str ((GFA1AdderOutput (ap,bm,cp)),cin,dm));
definition
let ap,
bm,
cp,
dm,
cin be
set ;
func BitFTA1Circ (
ap,
bm,
cp,
dm,
cin)
-> strict gate`2=den Boolean Circuit of
BitFTA1Str (
ap,
bm,
cp,
dm,
cin)
equals
(BitGFA1Circ (ap,bm,cp)) +* (BitGFA2Circ ((GFA1AdderOutput (ap,bm,cp)),cin,dm));
coherence
(BitGFA1Circ (ap,bm,cp)) +* (BitGFA2Circ ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) is strict gate`2=den Boolean Circuit of BitFTA1Str (ap,bm,cp,dm,cin)
;
end;
::
deftheorem defines
BitFTA1Circ FTACELL1:def 8 :
for ap, bm, cp, dm, cin being set holds BitFTA1Circ (ap,bm,cp,dm,cin) = (BitGFA1Circ (ap,bm,cp)) +* (BitGFA2Circ ((GFA1AdderOutput (ap,bm,cp)),cin,dm));
theorem Th11:
for
ap,
bm,
cp,
dm,
cin being
set holds
InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) = (({[<*ap,bm*>,xor2c],(GFA1AdderOutput (ap,bm,cp))} \/ {[<*ap,bm*>,and2c],[<*bm,cp*>,and2a],[<*cp,ap*>,and2],(GFA1CarryOutput (ap,bm,cp))}) \/ {[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c],(GFA2AdderOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm))}) \/ {[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a],[<*cin,dm*>,and2c],[<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2],(GFA2CarryOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm))}
Lm11:
for x, y, z, p being set holds GFA1AdderOutput (x,y,z) <> [p,and2c]
Lm12:
for ap, bm, cp being non pair set
for x, y, z being set holds InputVertices (BitGFA1Str (ap,bm,cp)) misses InnerVertices (BitGFA2Str (x,y,z))
theorem Th13:
for
ap,
bm,
cp,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not
cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) = {ap,bm,cp,dm,cin}
theorem Th14:
for
ap,
bm,
cp,
dm,
cin being
set holds
(
ap in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
bm in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
cp in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
dm in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
cin in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*ap,bm*>,xor2c] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA1AdderOutput (
ap,
bm,
cp)
in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*ap,bm*>,and2c] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*bm,cp*>,and2a] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*cp,ap*>,and2] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA1CarryOutput (
ap,
bm,
cp)
in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA2AdderOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm)
in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*cin,dm*>,and2c] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA2CarryOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm)
in the
carrier of
(BitFTA1Str (ap,bm,cp,dm,cin)) )
theorem Th15:
for
ap,
bm,
cp,
dm,
cin being
set holds
(
[<*ap,bm*>,xor2c] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA1AdderOutput (
ap,
bm,
cp)
in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*ap,bm*>,and2c] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*bm,cp*>,and2a] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*cp,ap*>,and2] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA1CarryOutput (
ap,
bm,
cp)
in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA2AdderOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm)
in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*cin,dm*>,and2c] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
[<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
GFA2CarryOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm)
in InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) )
theorem Th16:
for
ap,
bm,
cp,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not
cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
(
ap in InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
bm in InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
cp in InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
dm in InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) &
cin in InputVertices (BitFTA1Str (ap,bm,cp,dm,cin)) )
definition
let ap,
bm,
cp,
dm,
cin be
set ;
func BitFTA1CarryOutput (
ap,
bm,
cp,
dm,
cin)
-> Element of
InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) equals
GFA1CarryOutput (
ap,
bm,
cp);
coherence
GFA1CarryOutput (ap,bm,cp) is Element of InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin))
by Th15;
func BitFTA1AdderOutputI (
ap,
bm,
cp,
dm,
cin)
-> Element of
InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) equals
GFA1AdderOutput (
ap,
bm,
cp);
coherence
GFA1AdderOutput (ap,bm,cp) is Element of InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin))
by Th15;
func BitFTA1AdderOutputP (
ap,
bm,
cp,
dm,
cin)
-> Element of
InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) equals
GFA2CarryOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm);
coherence
GFA2CarryOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm) is Element of InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin))
by Th15;
func BitFTA1AdderOutputQ (
ap,
bm,
cp,
dm,
cin)
-> Element of
InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin)) equals
GFA2AdderOutput (
(GFA1AdderOutput (ap,bm,cp)),
cin,
dm);
coherence
GFA2AdderOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm) is Element of InnerVertices (BitFTA1Str (ap,bm,cp,dm,cin))
by Th15;
end;
::
deftheorem defines
BitFTA1CarryOutput FTACELL1:def 9 :
for ap, bm, cp, dm, cin being set holds BitFTA1CarryOutput (ap,bm,cp,dm,cin) = GFA1CarryOutput (ap,bm,cp);
::
deftheorem defines
BitFTA1AdderOutputI FTACELL1:def 10 :
for ap, bm, cp, dm, cin being set holds BitFTA1AdderOutputI (ap,bm,cp,dm,cin) = GFA1AdderOutput (ap,bm,cp);
::
deftheorem defines
BitFTA1AdderOutputP FTACELL1:def 11 :
for ap, bm, cp, dm, cin being set holds BitFTA1AdderOutputP (ap,bm,cp,dm,cin) = GFA2CarryOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm);
::
deftheorem defines
BitFTA1AdderOutputQ FTACELL1:def 12 :
for ap, bm, cp, dm, cin being set holds BitFTA1AdderOutputQ (ap,bm,cp,dm,cin) = GFA2AdderOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm);
theorem
for
ap,
bm,
cp being non
pair set for
dm,
cin being
set for
s being
State of
(BitFTA1Circ (ap,bm,cp,dm,cin)) for
a1,
a2,
a3 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bm &
a3 = s . cp holds
(
(Following (s,2)) . (BitFTA1CarryOutput (ap,bm,cp,dm,cin)) = ((a1 '&' ('not' a2)) 'or' (('not' a2) '&' a3)) 'or' (a3 '&' a1) &
(Following (s,2)) . (BitFTA1AdderOutputI (ap,bm,cp,dm,cin)) = 'not' ((a1 'xor' ('not' a2)) 'xor' a3) )
theorem Th18:
for
ap,
bm,
cp,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not
cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for
s being
State of
(BitFTA1Circ (ap,bm,cp,dm,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bm &
a3 = s . cp &
a4 = s . dm &
a5 = s . cin holds
(
(Following (s,2)) . (GFA1AdderOutput (ap,bm,cp)) = 'not' ((a1 'xor' ('not' a2)) 'xor' a3) &
(Following (s,2)) . ap = a1 &
(Following (s,2)) . bm = a2 &
(Following (s,2)) . cp = a3 &
(Following (s,2)) . dm = a4 &
(Following (s,2)) . cin = a5 )
Lm13:
for ap, bm, cp, dm being non pair set
for cin being set
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a123, a4, a5 being Element of BOOLEAN st a123 = s . (GFA1AdderOutput (ap,bm,cp)) & a4 = s . dm & a5 = s . cin holds
( (Following s) . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a] = ('not' a123) '&' a5 & (Following s) . [<*cin,dm*>,and2c] = a5 '&' ('not' a4) & (Following s) . [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] = ('not' a4) '&' ('not' a123) )
Lm14:
for ap, bm, cp, dm being non pair set
for cin being set
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a123, a5 being Element of BOOLEAN st a123 = s . (GFA1AdderOutput (ap,bm,cp)) & a5 = s . cin holds
(Following s) . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c] = a123 'xor' ('not' a5)
Lm15:
for ap, bm, cp, dm being non pair set
for cin being set st cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bm & a3 = s . cp & a4 = s . dm & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a] = ((a1 'xor' ('not' a2)) 'xor' a3) '&' a5 & (Following (s,3)) . [<*cin,dm*>,and2c] = a5 '&' ('not' a4) & (Following (s,3)) . [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] = ('not' a4) '&' ((a1 'xor' ('not' a2)) 'xor' a3) & (Following (s,3)) . ap = a1 & (Following (s,3)) . bm = a2 & (Following (s,3)) . cp = a3 & (Following (s,3)) . dm = a4 & (Following (s,3)) . cin = a5 )
Lm16:
for ap, bm, cp, dm being non pair set
for cin being set st cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bm & a3 = s . cp & a4 = s . dm & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c] = ('not' ((a1 'xor' ('not' a2)) 'xor' a3)) 'xor' ('not' a5) & (Following (s,3)) . ap = a1 & (Following (s,3)) . bm = a2 & (Following (s,3)) . cp = a3 & (Following (s,3)) . dm = a4 & (Following (s,3)) . cin = a5 )
Lm17:
for ap, bm, cp, dm being non pair set
for cin being set
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a123x, a123y, a123z being Element of BOOLEAN st a123x = s . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,and2a] & a123y = s . [<*cin,dm*>,and2c] & a123z = s . [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] holds
(Following s) . (GFA2CarryOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) = 'not' ((a123x 'or' a123y) 'or' a123z)
Lm18:
for ap, bm, cp, dm being non pair set
for cin being set
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a1235, a4 being Element of BOOLEAN st a1235 = s . [<*(GFA1AdderOutput (ap,bm,cp)),cin*>,xor2c] & a4 = s . dm holds
(Following s) . (GFA2AdderOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) = a1235 'xor' ('not' a4)
Lm19:
for ap, bm, cp, dm being non pair set
for cin being set st cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bm & a3 = s . cp & a4 = s . dm & a5 = s . cin holds
( (Following (s,4)) . (GFA2CarryOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) = 'not' (((((a1 'xor' ('not' a2)) 'xor' a3) '&' a5) 'or' (a5 '&' ('not' a4))) 'or' (('not' a4) '&' ((a1 'xor' ('not' a2)) 'xor' a3))) & (Following (s,4)) . ap = a1 & (Following (s,4)) . bm = a2 & (Following (s,4)) . cp = a3 & (Following (s,4)) . dm = a4 & (Following (s,4)) . cin = a5 )
Lm20:
for ap, bm, cp, dm being non pair set
for cin being set st cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for s being State of (BitFTA1Circ (ap,bm,cp,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . ap & a2 = s . bm & a3 = s . cp & a4 = s . dm & a5 = s . cin holds
( (Following (s,4)) . (GFA2AdderOutput ((GFA1AdderOutput (ap,bm,cp)),cin,dm)) = (((a1 'xor' ('not' a2)) 'xor' a3) 'xor' ('not' a4)) 'xor' a5 & (Following (s,4)) . ap = a1 & (Following (s,4)) . bm = a2 & (Following (s,4)) . cp = a3 & (Following (s,4)) . dm = a4 & (Following (s,4)) . cin = a5 )
theorem
for
ap,
bm,
cp,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] & not
cin in InnerVertices (BitGFA1Str (ap,bm,cp)) holds
for
s being
State of
(BitFTA1Circ (ap,bm,cp,dm,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . ap &
a2 = s . bm &
a3 = s . cp &
a4 = s . dm &
a5 = s . cin holds
(
(Following (s,4)) . (BitFTA1AdderOutputP (ap,bm,cp,dm,cin)) = 'not' (((((a1 'xor' ('not' a2)) 'xor' a3) '&' a5) 'or' (a5 '&' ('not' a4))) 'or' (('not' a4) '&' ((a1 'xor' ('not' a2)) 'xor' a3))) &
(Following (s,4)) . (BitFTA1AdderOutputQ (ap,bm,cp,dm,cin)) = (((a1 'xor' ('not' a2)) 'xor' a3) 'xor' ('not' a4)) 'xor' a5 )
by Lm19, Lm20;
theorem
for
ap,
bm,
cp,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA1AdderOutput (ap,bm,cp))*>,nor2] holds
for
s being
State of
(BitFTA1Circ (ap,bm,cp,dm,cin)) holds
Following (
s,4) is
stable
definition
let am,
bp,
cm,
dp,
cin be
set ;
func BitFTA2Str (
am,
bp,
cm,
dp,
cin)
-> non
empty non
void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign equals
(BitGFA2Str (am,bp,cm)) +* (BitGFA1Str ((GFA2AdderOutput (am,bp,cm)),cin,dp));
coherence
(BitGFA2Str (am,bp,cm)) +* (BitGFA1Str ((GFA2AdderOutput (am,bp,cm)),cin,dp)) is non empty non void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign
;
end;
::
deftheorem defines
BitFTA2Str FTACELL1:def 13 :
for am, bp, cm, dp, cin being set holds BitFTA2Str (am,bp,cm,dp,cin) = (BitGFA2Str (am,bp,cm)) +* (BitGFA1Str ((GFA2AdderOutput (am,bp,cm)),cin,dp));
definition
let am,
bp,
cm,
dp,
cin be
set ;
func BitFTA2Circ (
am,
bp,
cm,
dp,
cin)
-> strict gate`2=den Boolean Circuit of
BitFTA2Str (
am,
bp,
cm,
dp,
cin)
equals
(BitGFA2Circ (am,bp,cm)) +* (BitGFA1Circ ((GFA2AdderOutput (am,bp,cm)),cin,dp));
coherence
(BitGFA2Circ (am,bp,cm)) +* (BitGFA1Circ ((GFA2AdderOutput (am,bp,cm)),cin,dp)) is strict gate`2=den Boolean Circuit of BitFTA2Str (am,bp,cm,dp,cin)
;
end;
::
deftheorem defines
BitFTA2Circ FTACELL1:def 14 :
for am, bp, cm, dp, cin being set holds BitFTA2Circ (am,bp,cm,dp,cin) = (BitGFA2Circ (am,bp,cm)) +* (BitGFA1Circ ((GFA2AdderOutput (am,bp,cm)),cin,dp));
theorem Th21:
for
am,
bp,
cm,
dp,
cin being
set holds
InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) = (({[<*am,bp*>,xor2c],(GFA2AdderOutput (am,bp,cm))} \/ {[<*am,bp*>,and2a],[<*bp,cm*>,and2c],[<*cm,am*>,nor2],(GFA2CarryOutput (am,bp,cm))}) \/ {[<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c],(GFA1AdderOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp))}) \/ {[<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c],[<*cin,dp*>,and2a],[<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2],(GFA1CarryOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp))}
Lm21:
for x, y, z, p being set holds GFA2AdderOutput (x,y,z) <> [p,and2a]
Lm22:
for am, bp, cm being non pair set
for x, y, z being set holds InputVertices (BitGFA2Str (am,bp,cm)) misses InnerVertices (BitGFA1Str (x,y,z))
theorem Th23:
for
am,
bp,
cm,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not
cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) = {am,bp,cm,dp,cin}
theorem Th24:
for
am,
bp,
cm,
dp,
cin being
set holds
(
am in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
bp in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
cm in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
dp in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
cin in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*am,bp*>,xor2c] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
GFA2AdderOutput (
am,
bp,
cm)
in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*am,bp*>,and2a] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*bp,cm*>,and2c] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*cm,am*>,nor2] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
GFA2CarryOutput (
am,
bp,
cm)
in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
GFA1AdderOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp)
in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*cin,dp*>,and2a] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
[<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) &
GFA1CarryOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp)
in the
carrier of
(BitFTA2Str (am,bp,cm,dp,cin)) )
theorem Th25:
for
am,
bp,
cm,
dp,
cin being
set holds
(
[<*am,bp*>,xor2c] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
GFA2AdderOutput (
am,
bp,
cm)
in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*am,bp*>,and2a] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*bp,cm*>,and2c] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*cm,am*>,nor2] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
GFA2CarryOutput (
am,
bp,
cm)
in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
GFA1AdderOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp)
in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*cin,dp*>,and2a] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
[<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
GFA1CarryOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp)
in InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) )
theorem Th26:
for
am,
bp,
cm,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not
cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
(
am in InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
bp in InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
cm in InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
dp in InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) &
cin in InputVertices (BitFTA2Str (am,bp,cm,dp,cin)) )
definition
let am,
bp,
cm,
dp,
cin be
set ;
func BitFTA2CarryOutput (
am,
bp,
cm,
dp,
cin)
-> Element of
InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) equals
GFA2CarryOutput (
am,
bp,
cm);
coherence
GFA2CarryOutput (am,bp,cm) is Element of InnerVertices (BitFTA2Str (am,bp,cm,dp,cin))
by Th25;
func BitFTA2AdderOutputI (
am,
bp,
cm,
dp,
cin)
-> Element of
InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) equals
GFA2AdderOutput (
am,
bp,
cm);
coherence
GFA2AdderOutput (am,bp,cm) is Element of InnerVertices (BitFTA2Str (am,bp,cm,dp,cin))
by Th25;
func BitFTA2AdderOutputP (
am,
bp,
cm,
dp,
cin)
-> Element of
InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) equals
GFA1CarryOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp);
coherence
GFA1CarryOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp) is Element of InnerVertices (BitFTA2Str (am,bp,cm,dp,cin))
by Th25;
func BitFTA2AdderOutputQ (
am,
bp,
cm,
dp,
cin)
-> Element of
InnerVertices (BitFTA2Str (am,bp,cm,dp,cin)) equals
GFA1AdderOutput (
(GFA2AdderOutput (am,bp,cm)),
cin,
dp);
coherence
GFA1AdderOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp) is Element of InnerVertices (BitFTA2Str (am,bp,cm,dp,cin))
by Th25;
end;
::
deftheorem defines
BitFTA2CarryOutput FTACELL1:def 15 :
for am, bp, cm, dp, cin being set holds BitFTA2CarryOutput (am,bp,cm,dp,cin) = GFA2CarryOutput (am,bp,cm);
::
deftheorem defines
BitFTA2AdderOutputI FTACELL1:def 16 :
for am, bp, cm, dp, cin being set holds BitFTA2AdderOutputI (am,bp,cm,dp,cin) = GFA2AdderOutput (am,bp,cm);
::
deftheorem defines
BitFTA2AdderOutputP FTACELL1:def 17 :
for am, bp, cm, dp, cin being set holds BitFTA2AdderOutputP (am,bp,cm,dp,cin) = GFA1CarryOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp);
::
deftheorem defines
BitFTA2AdderOutputQ FTACELL1:def 18 :
for am, bp, cm, dp, cin being set holds BitFTA2AdderOutputQ (am,bp,cm,dp,cin) = GFA1AdderOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp);
theorem
for
am,
bp,
cm being non
pair set for
dp,
cin being
set for
s being
State of
(BitFTA2Circ (am,bp,cm,dp,cin)) for
a1,
a2,
a3 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bp &
a3 = s . cm holds
(
(Following (s,2)) . (BitFTA2CarryOutput (am,bp,cm,dp,cin)) = 'not' (((('not' a1) '&' a2) 'or' (a2 '&' ('not' a3))) 'or' (('not' a3) '&' ('not' a1))) &
(Following (s,2)) . (BitFTA2AdderOutputI (am,bp,cm,dp,cin)) = (('not' a1) 'xor' a2) 'xor' ('not' a3) )
theorem Th28:
for
am,
bp,
cm,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not
cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for
s being
State of
(BitFTA2Circ (am,bp,cm,dp,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bp &
a3 = s . cm &
a4 = s . dp &
a5 = s . cin holds
(
(Following (s,2)) . (GFA2AdderOutput (am,bp,cm)) = (('not' a1) 'xor' a2) 'xor' ('not' a3) &
(Following (s,2)) . am = a1 &
(Following (s,2)) . bp = a2 &
(Following (s,2)) . cm = a3 &
(Following (s,2)) . dp = a4 &
(Following (s,2)) . cin = a5 )
Lm23:
for am, bp, cm, dp being non pair set
for cin being set
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a123, a4, a5 being Element of BOOLEAN st a123 = s . (GFA2AdderOutput (am,bp,cm)) & a4 = s . dp & a5 = s . cin holds
( (Following s) . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c] = a123 '&' ('not' a5) & (Following s) . [<*cin,dp*>,and2a] = ('not' a5) '&' a4 & (Following s) . [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] = a4 '&' a123 )
Lm24:
for am, bp, cm, dp being non pair set
for cin being set
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a123, a5 being Element of BOOLEAN st a123 = s . (GFA2AdderOutput (am,bp,cm)) & a5 = s . cin holds
(Following s) . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c] = a123 'xor' ('not' a5)
Lm25:
for am, bp, cm, dp being non pair set
for cin being set st cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bp & a3 = s . cm & a4 = s . dp & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c] = ((('not' a1) 'xor' a2) 'xor' ('not' a3)) '&' ('not' a5) & (Following (s,3)) . [<*cin,dp*>,and2a] = ('not' a5) '&' a4 & (Following (s,3)) . [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] = a4 '&' ((('not' a1) 'xor' a2) 'xor' ('not' a3)) & (Following (s,3)) . am = a1 & (Following (s,3)) . bp = a2 & (Following (s,3)) . cm = a3 & (Following (s,3)) . dp = a4 & (Following (s,3)) . cin = a5 )
Lm26:
for am, bp, cm, dp being non pair set
for cin being set st cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bp & a3 = s . cm & a4 = s . dp & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c] = ((('not' a1) 'xor' a2) 'xor' ('not' a3)) 'xor' ('not' a5) & (Following (s,3)) . am = a1 & (Following (s,3)) . bp = a2 & (Following (s,3)) . cm = a3 & (Following (s,3)) . dp = a4 & (Following (s,3)) . cin = a5 )
Lm27:
for am, bp, cm, dp being non pair set
for cin being set
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a123x, a123y, a123z being Element of BOOLEAN st a123x = s . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,and2c] & a123y = s . [<*cin,dp*>,and2a] & a123z = s . [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] holds
(Following s) . (GFA1CarryOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp)) = (a123x 'or' a123y) 'or' a123z
Lm28:
for am, bp, cm, dp being non pair set
for cin being set
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a1235, a4 being Element of BOOLEAN st a1235 = s . [<*(GFA2AdderOutput (am,bp,cm)),cin*>,xor2c] & a4 = s . dp holds
(Following s) . (GFA1AdderOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp)) = a1235 'xor' ('not' a4)
Lm29:
for am, bp, cm, dp being non pair set
for cin being set st cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bp & a3 = s . cm & a4 = s . dp & a5 = s . cin holds
( (Following (s,4)) . (GFA1CarryOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp)) = ((((('not' a1) 'xor' a2) 'xor' ('not' a3)) '&' ('not' a5)) 'or' (('not' a5) '&' a4)) 'or' (a4 '&' ((('not' a1) 'xor' a2) 'xor' ('not' a3))) & (Following (s,4)) . am = a1 & (Following (s,4)) . bp = a2 & (Following (s,4)) . cm = a3 & (Following (s,4)) . dp = a4 & (Following (s,4)) . cin = a5 )
Lm30:
for am, bp, cm, dp being non pair set
for cin being set st cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for s being State of (BitFTA2Circ (am,bp,cm,dp,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bp & a3 = s . cm & a4 = s . dp & a5 = s . cin holds
( (Following (s,4)) . (GFA1AdderOutput ((GFA2AdderOutput (am,bp,cm)),cin,dp)) = 'not' ((((('not' a1) 'xor' a2) 'xor' ('not' a3)) 'xor' a4) 'xor' ('not' a5)) & (Following (s,4)) . am = a1 & (Following (s,4)) . bp = a2 & (Following (s,4)) . cm = a3 & (Following (s,4)) . dp = a4 & (Following (s,4)) . cin = a5 )
theorem
for
am,
bp,
cm,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] & not
cin in InnerVertices (BitGFA2Str (am,bp,cm)) holds
for
s being
State of
(BitFTA2Circ (am,bp,cm,dp,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bp &
a3 = s . cm &
a4 = s . dp &
a5 = s . cin holds
(
(Following (s,4)) . (BitFTA2AdderOutputP (am,bp,cm,dp,cin)) = ((((('not' a1) 'xor' a2) 'xor' ('not' a3)) '&' ('not' a5)) 'or' (('not' a5) '&' a4)) 'or' (a4 '&' ((('not' a1) 'xor' a2) 'xor' ('not' a3))) &
(Following (s,4)) . (BitFTA2AdderOutputQ (am,bp,cm,dp,cin)) = 'not' ((((('not' a1) 'xor' a2) 'xor' ('not' a3)) 'xor' a4) 'xor' ('not' a5)) )
by Lm29, Lm30;
theorem
for
am,
bp,
cm,
dp being non
pair set for
cin being
set st
cin <> [<*dp,(GFA2AdderOutput (am,bp,cm))*>,and2] holds
for
s being
State of
(BitFTA2Circ (am,bp,cm,dp,cin)) holds
Following (
s,4) is
stable
definition
let am,
bm,
cm,
dm,
cin be
set ;
func BitFTA3Str (
am,
bm,
cm,
dm,
cin)
-> non
empty non
void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign equals
(BitGFA3Str (am,bm,cm)) +* (BitGFA3Str ((GFA3AdderOutput (am,bm,cm)),cin,dm));
coherence
(BitGFA3Str (am,bm,cm)) +* (BitGFA3Str ((GFA3AdderOutput (am,bm,cm)),cin,dm)) is non empty non void strict unsplit gate`1=arity gate`2isBoolean ManySortedSign
;
end;
::
deftheorem defines
BitFTA3Str FTACELL1:def 19 :
for am, bm, cm, dm, cin being set holds BitFTA3Str (am,bm,cm,dm,cin) = (BitGFA3Str (am,bm,cm)) +* (BitGFA3Str ((GFA3AdderOutput (am,bm,cm)),cin,dm));
definition
let am,
bm,
cm,
dm,
cin be
set ;
func BitFTA3Circ (
am,
bm,
cm,
dm,
cin)
-> strict gate`2=den Boolean Circuit of
BitFTA3Str (
am,
bm,
cm,
dm,
cin)
equals
(BitGFA3Circ (am,bm,cm)) +* (BitGFA3Circ ((GFA3AdderOutput (am,bm,cm)),cin,dm));
coherence
(BitGFA3Circ (am,bm,cm)) +* (BitGFA3Circ ((GFA3AdderOutput (am,bm,cm)),cin,dm)) is strict gate`2=den Boolean Circuit of BitFTA3Str (am,bm,cm,dm,cin)
;
end;
::
deftheorem defines
BitFTA3Circ FTACELL1:def 20 :
for am, bm, cm, dm, cin being set holds BitFTA3Circ (am,bm,cm,dm,cin) = (BitGFA3Circ (am,bm,cm)) +* (BitGFA3Circ ((GFA3AdderOutput (am,bm,cm)),cin,dm));
theorem Th31:
for
am,
bm,
cm,
dm,
cin being
set holds
InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) = (({[<*am,bm*>,xor2],(GFA3AdderOutput (am,bm,cm))} \/ {[<*am,bm*>,nor2],[<*bm,cm*>,nor2],[<*cm,am*>,nor2],(GFA3CarryOutput (am,bm,cm))}) \/ {[<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2],(GFA3AdderOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm))}) \/ {[<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2],[<*cin,dm*>,nor2],[<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2],(GFA3CarryOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm))}
Lm31:
for x, y, z, p being set holds GFA3AdderOutput (x,y,z) <> [p,nor2]
Lm32:
for am, bm, cm being non pair set
for x, y, z being set holds InputVertices (BitGFA3Str (am,bm,cm)) misses InnerVertices (BitGFA3Str (x,y,z))
theorem Th33:
for
am,
bm,
cm,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not
cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) = {am,bm,cm,dm,cin}
theorem Th34:
for
am,
bm,
cm,
dm,
cin being
set holds
(
am in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
bm in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
cm in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
dm in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
cin in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*am,bm*>,xor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3AdderOutput (
am,
bm,
cm)
in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*am,bm*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*bm,cm*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*cm,am*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3CarryOutput (
am,
bm,
cm)
in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3AdderOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm)
in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*cin,dm*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
[<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3CarryOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm)
in the
carrier of
(BitFTA3Str (am,bm,cm,dm,cin)) )
theorem Th35:
for
am,
bm,
cm,
dm,
cin being
set holds
(
[<*am,bm*>,xor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3AdderOutput (
am,
bm,
cm)
in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*am,bm*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*bm,cm*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*cm,am*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3CarryOutput (
am,
bm,
cm)
in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3AdderOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm)
in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*cin,dm*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
[<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
GFA3CarryOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm)
in InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) )
theorem Th36:
for
am,
bm,
cm,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not
cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
(
am in InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
bm in InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
cm in InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
dm in InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) &
cin in InputVertices (BitFTA3Str (am,bm,cm,dm,cin)) )
definition
let am,
bm,
cm,
dm,
cin be
set ;
func BitFTA3CarryOutput (
am,
bm,
cm,
dm,
cin)
-> Element of
InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) equals
GFA3CarryOutput (
am,
bm,
cm);
coherence
GFA3CarryOutput (am,bm,cm) is Element of InnerVertices (BitFTA3Str (am,bm,cm,dm,cin))
by Th35;
func BitFTA3AdderOutputI (
am,
bm,
cm,
dm,
cin)
-> Element of
InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) equals
GFA3AdderOutput (
am,
bm,
cm);
coherence
GFA3AdderOutput (am,bm,cm) is Element of InnerVertices (BitFTA3Str (am,bm,cm,dm,cin))
by Th35;
func BitFTA3AdderOutputP (
am,
bm,
cm,
dm,
cin)
-> Element of
InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) equals
GFA3CarryOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm);
coherence
GFA3CarryOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm) is Element of InnerVertices (BitFTA3Str (am,bm,cm,dm,cin))
by Th35;
func BitFTA3AdderOutputQ (
am,
bm,
cm,
dm,
cin)
-> Element of
InnerVertices (BitFTA3Str (am,bm,cm,dm,cin)) equals
GFA3AdderOutput (
(GFA3AdderOutput (am,bm,cm)),
cin,
dm);
coherence
GFA3AdderOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm) is Element of InnerVertices (BitFTA3Str (am,bm,cm,dm,cin))
by Th35;
end;
::
deftheorem defines
BitFTA3CarryOutput FTACELL1:def 21 :
for am, bm, cm, dm, cin being set holds BitFTA3CarryOutput (am,bm,cm,dm,cin) = GFA3CarryOutput (am,bm,cm);
::
deftheorem defines
BitFTA3AdderOutputI FTACELL1:def 22 :
for am, bm, cm, dm, cin being set holds BitFTA3AdderOutputI (am,bm,cm,dm,cin) = GFA3AdderOutput (am,bm,cm);
::
deftheorem defines
BitFTA3AdderOutputP FTACELL1:def 23 :
for am, bm, cm, dm, cin being set holds BitFTA3AdderOutputP (am,bm,cm,dm,cin) = GFA3CarryOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm);
::
deftheorem defines
BitFTA3AdderOutputQ FTACELL1:def 24 :
for am, bm, cm, dm, cin being set holds BitFTA3AdderOutputQ (am,bm,cm,dm,cin) = GFA3AdderOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm);
theorem
for
am,
bm,
cm being non
pair set for
dm,
cin being
set for
s being
State of
(BitFTA3Circ (am,bm,cm,dm,cin)) for
a1,
a2,
a3 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bm &
a3 = s . cm holds
(
(Following (s,2)) . (BitFTA3CarryOutput (am,bm,cm,dm,cin)) = 'not' (((('not' a1) '&' ('not' a2)) 'or' (('not' a2) '&' ('not' a3))) 'or' (('not' a3) '&' ('not' a1))) &
(Following (s,2)) . (BitFTA3AdderOutputI (am,bm,cm,dm,cin)) = 'not' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) )
theorem Th38:
for
am,
bm,
cm,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not
cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for
s being
State of
(BitFTA3Circ (am,bm,cm,dm,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bm &
a3 = s . cm &
a4 = s . dm &
a5 = s . cin holds
(
(Following (s,2)) . (GFA3AdderOutput (am,bm,cm)) = 'not' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) &
(Following (s,2)) . am = a1 &
(Following (s,2)) . bm = a2 &
(Following (s,2)) . cm = a3 &
(Following (s,2)) . dm = a4 &
(Following (s,2)) . cin = a5 )
Lm33:
for am, bm, cm, dm being non pair set
for cin being set
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a123, a4, a5 being Element of BOOLEAN st a123 = s . (GFA3AdderOutput (am,bm,cm)) & a4 = s . dm & a5 = s . cin holds
( (Following s) . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2] = ('not' a123) '&' ('not' a5) & (Following s) . [<*cin,dm*>,nor2] = ('not' a5) '&' ('not' a4) & (Following s) . [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] = ('not' a4) '&' ('not' a123) )
Lm34:
for am, bm, cm, dm being non pair set
for cin being set
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a123, a5 being Element of BOOLEAN st a123 = s . (GFA3AdderOutput (am,bm,cm)) & a5 = s . cin holds
(Following s) . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2] = a123 'xor' a5
Lm35:
for am, bm, cm, dm being non pair set
for cin being set st cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bm & a3 = s . cm & a4 = s . dm & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2] = ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) '&' ('not' a5) & (Following (s,3)) . [<*cin,dm*>,nor2] = ('not' a5) '&' ('not' a4) & (Following (s,3)) . [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] = ('not' a4) '&' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) & (Following (s,3)) . am = a1 & (Following (s,3)) . bm = a2 & (Following (s,3)) . cm = a3 & (Following (s,3)) . dm = a4 & (Following (s,3)) . cin = a5 )
Lm36:
for am, bm, cm, dm being non pair set
for cin being set st cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bm & a3 = s . cm & a4 = s . dm & a5 = s . cin holds
( (Following (s,3)) . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2] = ('not' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3))) 'xor' a5 & (Following (s,3)) . am = a1 & (Following (s,3)) . bm = a2 & (Following (s,3)) . cm = a3 & (Following (s,3)) . dm = a4 & (Following (s,3)) . cin = a5 )
Lm37:
for am, bm, cm, dm being non pair set
for cin being set
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a123x, a123y, a123z being Element of BOOLEAN st a123x = s . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,nor2] & a123y = s . [<*cin,dm*>,nor2] & a123z = s . [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] holds
(Following s) . (GFA3CarryOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm)) = 'not' ((a123x 'or' a123y) 'or' a123z)
Lm38:
for am, bm, cm, dm being non pair set
for cin being set
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a1235, a4 being Element of BOOLEAN st a1235 = s . [<*(GFA3AdderOutput (am,bm,cm)),cin*>,xor2] & a4 = s . dm holds
(Following s) . (GFA3AdderOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm)) = a1235 'xor' a4
Lm39:
for am, bm, cm, dm being non pair set
for cin being set st cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bm & a3 = s . cm & a4 = s . dm & a5 = s . cin holds
( (Following (s,4)) . (GFA3CarryOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm)) = 'not' (((((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) '&' ('not' a5)) 'or' (('not' a5) '&' ('not' a4))) 'or' (('not' a4) '&' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)))) & (Following (s,4)) . am = a1 & (Following (s,4)) . bm = a2 & (Following (s,4)) . cm = a3 & (Following (s,4)) . dm = a4 & (Following (s,4)) . cin = a5 )
Lm40:
for am, bm, cm, dm being non pair set
for cin being set st cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for s being State of (BitFTA3Circ (am,bm,cm,dm,cin))
for a1, a2, a3, a4, a5 being Element of BOOLEAN st a1 = s . am & a2 = s . bm & a3 = s . cm & a4 = s . dm & a5 = s . cin holds
( (Following (s,4)) . (GFA3AdderOutput ((GFA3AdderOutput (am,bm,cm)),cin,dm)) = 'not' ((((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) 'xor' ('not' a4)) 'xor' ('not' a5)) & (Following (s,4)) . am = a1 & (Following (s,4)) . bm = a2 & (Following (s,4)) . cm = a3 & (Following (s,4)) . dm = a4 & (Following (s,4)) . cin = a5 )
theorem
for
am,
bm,
cm,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] & not
cin in InnerVertices (BitGFA3Str (am,bm,cm)) holds
for
s being
State of
(BitFTA3Circ (am,bm,cm,dm,cin)) for
a1,
a2,
a3,
a4,
a5 being
Element of
BOOLEAN st
a1 = s . am &
a2 = s . bm &
a3 = s . cm &
a4 = s . dm &
a5 = s . cin holds
(
(Following (s,4)) . (BitFTA3AdderOutputP (am,bm,cm,dm,cin)) = 'not' (((((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) '&' ('not' a5)) 'or' (('not' a5) '&' ('not' a4))) 'or' (('not' a4) '&' ((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)))) &
(Following (s,4)) . (BitFTA3AdderOutputQ (am,bm,cm,dm,cin)) = 'not' ((((('not' a1) 'xor' ('not' a2)) 'xor' ('not' a3)) 'xor' ('not' a4)) 'xor' ('not' a5)) )
by Lm39, Lm40;
theorem
for
am,
bm,
cm,
dm being non
pair set for
cin being
set st
cin <> [<*dm,(GFA3AdderOutput (am,bm,cm))*>,nor2] holds
for
s being
State of
(BitFTA3Circ (am,bm,cm,dm,cin)) holds
Following (
s,4) is
stable
:: [4-2 Binary Addition Cell_i : TYPE-0]
::
:: Cell Module Symbol :
::
:: a+ b+ c+ d+ Input : a+,b+,c+,d+ (non pair set)
:: | | | | cin+ (pair)
:: +-*--*--*--*-+ cin+
:: | | /
:: +--* FTA TYPE-0 *--+ Output : p+,q+,cout+ (pair)
:: / | |
:: cout+ +---*----*---+
:: | |
:: p+ q+
::
:: Composition : Cascade by Adder Output together with two GFA TYPE-0
:: Function : p[i+1] + q[i] + Intermediate_Carry_out
:: = a[i] + b[i] + c[i] + d[i] + Intermediate_Carry_in
::
:: a^{+}[i] b^{+}[i]
:: | /
:: | /
:: +---*---*
:: | GFA *---- c^{+}[i] Circuit Composition :
:: | TYPE0 | BitGFA0Str(a+,b+,c+)
:: *---*---+ BitGFA0Str(A1,cin,d+)
:: / | cin[i] --->
:: / A1| / FTA0Str(a+,b+,c+,d+,cin)
:: cout[i+1] | /
:: +---*---* Intermediate Addition and Carry:
:: | GFA *---- d^{+}[i] A1 <= GFA0AdderOutput
:: | TYPE0 | cout[i+1] <= GFA0CarryOutput
:: *---*---+ q[i] <= GFA0AdderOutput
:: / | p[i+1] <= GFA0CarryOutput
:: / |
:: p^{+}[i+1] q^{+}[i]
::
:: Calculation Stability : Following(s,2+2) is stable.
::
::=========================================================================
::---------------------------------------------------------------
:: 1-1. Circuit Definition for Intermediate Addition and Carry Circuit (TYPE-0)
::---------------------------------------------------------------
:: Def. Combined Circuit Structure of 1-bit FTA TYPE-0