Lm1:
for m being non zero Element of NAT
for I being non empty FinSequence of NAT
for i being Element of NAT st rng I c= Seg m & i <= (len I) - 1 holds
( 1 <= I /. (i + 1) & I /. (i + 1) <= m )
Lm2:
for m being non zero Element of NAT
for I being non empty FinSequence of NAT
for i being Element of NAT st rng I c= Seg m & 1 <= i & i <= len I holds
( 1 <= I /. i & I /. i <= m )
definition
let m be non
zero Element of
NAT ;
let k be
Element of
NAT ;
let X be non
empty open Subset of
(REAL m);
func R_Algebra_of_Ck_Functions (
k,
X)
-> Subalgebra of
RAlgebra X equals
AlgebraStr(#
(Ck_Functions (k,X)),
(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),
(One_ ((Ck_Functions (k,X)),(RAlgebra X))),
(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #);
coherence
AlgebraStr(# (Ck_Functions (k,X)),(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(One_ ((Ck_Functions (k,X)),(RAlgebra X))),(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #) is Subalgebra of RAlgebra X
by C0SP1:6;
end;
::
deftheorem defines
R_Algebra_of_Ck_Functions CKSPACE1:def 3 :
for m being non zero Element of NAT
for k being Element of NAT
for X being non empty open Subset of (REAL m) holds R_Algebra_of_Ck_Functions (k,X) = AlgebraStr(# (Ck_Functions (k,X)),(mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(Add_ ((Ck_Functions (k,X)),(RAlgebra X))),(Mult_ ((Ck_Functions (k,X)),(RAlgebra X))),(One_ ((Ck_Functions (k,X)),(RAlgebra X))),(Zero_ ((Ck_Functions (k,X)),(RAlgebra X))) #);
registration
let m be non
zero Element of
NAT ;
let k be
Element of
NAT ;
let X be non
empty open Subset of
(REAL m);
coherence
( R_Algebra_of_Ck_Functions (k,X) is Abelian & R_Algebra_of_Ck_Functions (k,X) is add-associative & R_Algebra_of_Ck_Functions (k,X) is right_zeroed & R_Algebra_of_Ck_Functions (k,X) is right_complementable & R_Algebra_of_Ck_Functions (k,X) is vector-distributive & R_Algebra_of_Ck_Functions (k,X) is scalar-distributive & R_Algebra_of_Ck_Functions (k,X) is scalar-associative & R_Algebra_of_Ck_Functions (k,X) is scalar-unital & R_Algebra_of_Ck_Functions (k,X) is commutative & R_Algebra_of_Ck_Functions (k,X) is associative & R_Algebra_of_Ck_Functions (k,X) is right_unital & R_Algebra_of_Ck_Functions (k,X) is right-distributive & R_Algebra_of_Ck_Functions (k,X) is scalar-associative & R_Algebra_of_Ck_Functions (k,X) is vector-associative )
end;