registration
let D be
real-membered set ;
let a,
m be
BinOp of
D;
let M be
Function of
[:REAL,D:],
D;
let O,
Z be
Element of
D;
let n be
Function of
D,
REAL;
let c be
Function of
D,
D;
coherence
ConjNormAlgStr(# D,m,a,M,O,Z,n,c #) is real-membered
;
end;
registration
let D be
set ;
let a be
associative BinOp of
D;
let m be
BinOp of
D;
let M be
Function of
[:REAL,D:],
D;
let O,
Z be
Element of
D;
let n be
Function of
D,
REAL;
let c be
Function of
D,
D;
coherence
ConjNormAlgStr(# D,m,a,M,O,Z,n,c #) is add-associative
by BINOP_1:def 3;
end;
registration
let D be
set ;
let a be
commutative BinOp of
D;
let m be
BinOp of
D;
let M be
Function of
[:REAL,D:],
D;
let O,
Z be
Element of
D;
let n be
Function of
D,
REAL;
let c be
Function of
D,
D;
coherence
ConjNormAlgStr(# D,m,a,M,O,Z,n,c #) is Abelian
by BINOP_1:def 2;
end;
registration
let D be
set ;
let a be
BinOp of
D;
let m be
associative BinOp of
D;
let M be
Function of
[:REAL,D:],
D;
let O,
Z be
Element of
D;
let n be
Function of
D,
REAL;
let c be
Function of
D,
D;
coherence
ConjNormAlgStr(# D,m,a,M,O,Z,n,c #) is associative
by BINOP_1:def 3;
end;
registration
let D be
set ;
let a be
BinOp of
D;
let m be
commutative BinOp of
D;
let M be
Function of
[:REAL,D:],
D;
let O,
Z be
Element of
D;
let n be
Function of
D,
REAL;
let c be
Function of
D,
D;
coherence
ConjNormAlgStr(# D,m,a,M,O,Z,n,c #) is commutative
by BINOP_1:def 2;
end;
Lm1:
for N being non empty ConjNormAlgStr st ( N is left_unital or N is right_unital ) & N is Banach_Algebra-like_2 & N is almost_right_cancelable & N is well-conjugated & N is scalar-unital holds
(1. N) *' = 1. N
definition
let N be non
empty ConjNormAlgStr ;
func Cayley-Dickson N -> strict ConjNormAlgStr means :
Def9:
( the
carrier of
it = product <% the carrier of N, the carrier of N%> & the
ZeroF of
it = <%(0. N),(0. N)%> & the
OneF of
it = <%(1. N),(0. N)%> & ( for
a1,
a2,
b1,
b2 being
Element of
N holds
( the
addF of
it . (
<%a1,b1%>,
<%a2,b2%>)
= <%(a1 + a2),(b1 + b2)%> & the
multF of
it . (
<%a1,b1%>,
<%a2,b2%>)
= <%((a1 * a2) - ((b2 *') * b1)),((b2 * a1) + (b1 * (a2 *')))%> ) ) & ( for
r being
Real for
a,
b being
Element of
N holds the
Mult of
it . (
r,
<%a,b%>)
= <%(r * a),(r * b)%> ) & ( for
a,
b being
Element of
N holds
( the
normF of
it . <%a,b%> = sqrt ((||.a.|| ^2) + (||.b.|| ^2)) & the
conjugateF of
it . <%a,b%> = <%(a *'),(- b)%> ) ) );
existence
ex b1 being strict ConjNormAlgStr st
( the carrier of b1 = product <% the carrier of N, the carrier of N%> & the ZeroF of b1 = <%(0. N),(0. N)%> & the OneF of b1 = <%(1. N),(0. N)%> & ( for a1, a2, b1, b2 being Element of N holds
( the addF of b1 . (<%a1,b1%>,<%a2,b2%>) = <%(a1 + a2),(b1 + b2)%> & the multF of b1 . (<%a1,b1%>,<%a2,b2%>) = <%((a1 * a2) - ((b2 *') * b1)),((b2 * a1) + (b1 * (a2 *')))%> ) ) & ( for r being Real
for a, b being Element of N holds the Mult of b1 . (r,<%a,b%>) = <%(r * a),(r * b)%> ) & ( for a, b being Element of N holds
( the normF of b1 . <%a,b%> = sqrt ((||.a.|| ^2) + (||.b.|| ^2)) & the conjugateF of b1 . <%a,b%> = <%(a *'),(- b)%> ) ) )
uniqueness
for b1, b2 being strict ConjNormAlgStr st the carrier of b1 = product <% the carrier of N, the carrier of N%> & the ZeroF of b1 = <%(0. N),(0. N)%> & the OneF of b1 = <%(1. N),(0. N)%> & ( for a1, a2, b1, b2 being Element of N holds
( the addF of b1 . (<%a1,b1%>,<%a2,b2%>) = <%(a1 + a2),(b1 + b2)%> & the multF of b1 . (<%a1,b1%>,<%a2,b2%>) = <%((a1 * a2) - ((b2 *') * b1)),((b2 * a1) + (b1 * (a2 *')))%> ) ) & ( for r being Real
for a, b being Element of N holds the Mult of b1 . (r,<%a,b%>) = <%(r * a),(r * b)%> ) & ( for a, b being Element of N holds
( the normF of b1 . <%a,b%> = sqrt ((||.a.|| ^2) + (||.b.|| ^2)) & the conjugateF of b1 . <%a,b%> = <%(a *'),(- b)%> ) ) & the carrier of b2 = product <% the carrier of N, the carrier of N%> & the ZeroF of b2 = <%(0. N),(0. N)%> & the OneF of b2 = <%(1. N),(0. N)%> & ( for a1, a2, b1, b2 being Element of N holds
( the addF of b2 . (<%a1,b1%>,<%a2,b2%>) = <%(a1 + a2),(b1 + b2)%> & the multF of b2 . (<%a1,b1%>,<%a2,b2%>) = <%((a1 * a2) - ((b2 *') * b1)),((b2 * a1) + (b1 * (a2 *')))%> ) ) & ( for r being Real
for a, b being Element of N holds the Mult of b2 . (r,<%a,b%>) = <%(r * a),(r * b)%> ) & ( for a, b being Element of N holds
( the normF of b2 . <%a,b%> = sqrt ((||.a.|| ^2) + (||.b.|| ^2)) & the conjugateF of b2 . <%a,b%> = <%(a *'),(- b)%> ) ) holds
b1 = b2
end;
::
deftheorem Def9 defines
Cayley-Dickson CAYLDICK:def 9 :
for N being non empty ConjNormAlgStr
for b2 being strict ConjNormAlgStr holds
( b2 = Cayley-Dickson N iff ( the carrier of b2 = product <% the carrier of N, the carrier of N%> & the ZeroF of b2 = <%(0. N),(0. N)%> & the OneF of b2 = <%(1. N),(0. N)%> & ( for a1, a2, b1, b2 being Element of N holds
( the addF of b2 . (<%a1,b1%>,<%a2,b2%>) = <%(a1 + a2),(b1 + b2)%> & the multF of b2 . (<%a1,b1%>,<%a2,b2%>) = <%((a1 * a2) - ((b2 *') * b1)),((b2 * a1) + (b1 * (a2 *')))%> ) ) & ( for r being Real
for a, b being Element of N holds the Mult of b2 . (r,<%a,b%>) = <%(r * a),(r * b)%> ) & ( for a, b being Element of N holds
( the normF of b2 . <%a,b%> = sqrt ((||.a.|| ^2) + (||.b.|| ^2)) & the conjugateF of b2 . <%a,b%> = <%(a *'),(- b)%> ) ) ) );
set z = 0. N_Real;
set j = 1. N_Real;
set ZJ = <%(0. N_Real),(1. N_Real)%>;
set ZZ = <%(0. N_Real),(0. N_Real)%>;
set JZ = <%(1. N_Real),(0. N_Real)%>;
set ZM = <%(0. N_Real),(- (1. N_Real))%>;
set MZ = <%(- (1. N_Real)),(0. N_Real)%>;
Lm2: <%(0. N_Real),(1. N_Real)%> * <%(1. N_Real),(0. N_Real)%> =
<%(((0. N_Real) * (1. N_Real)) - (((0. N_Real) *') * (1. N_Real))),(((0. N_Real) * (0. N_Real)) + (((1. N_Real) *') * (1. N_Real)))%>
by Def9
.=
<%(0. N_Real),(((1. N_Real) *') * (1. N_Real))%>
;
set ZZZZ = <%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>;
set JZZZ = <%<%(1. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>;
set ZJZZ = <%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>;
set ZZJZ = <%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>;
set ZZZJ = <%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(1. N_Real)%>%>;
Lm3:
<%(0. N_Real),(1. N_Real)%> *' = <%((0. N_Real) *'),(- (1. N_Real))%>
by Def9;
theorem Th32:
<%<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> * <%<%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> = <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(1. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%>
theorem Th33:
<%<%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> * <%<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> = <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(- (1. N_Real))%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%>
theorem Th34:
(<%<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> * <%<%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%>) * <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> = <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(- (1. N_Real)),(0. N_Real)%>%>%>
theorem Th35:
<%<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> * (<%<%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%> * <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(1. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>%>) = <%<%<%(0. N_Real),(0. N_Real)%>,<%(0. N_Real),(0. N_Real)%>%>,<%<%(0. N_Real),(0. N_Real)%>,<%(1. N_Real),(0. N_Real)%>%>%>